/******************************************************** Xpress-BCL C# Example Problems ============================== file xbelsc.cs `````````````` Economic lot sizing, ELS, problem, solved by adding (l,S)-inequalities) in a branch-and-cut heuristic (using the cut manager). ELS considers production planning over a horizon of T periods. In period t, t=1,...,T, there is a given demand DEMAND[t] that must be satisfied by production prod[t] in period t and by inventory carried over from previous periods. There is a set-up up cost SETUPCOST[t] associated with production in period t. The unit production cost in period t is PRODCOST[t]. There is no inventory or stock-holding cost. (c) 2008 Fair Isaac Corporation authors: S.Heipcke, D.Brett. ********************************************************/ using System; using System.Text; using System.IO; using Optimizer; using BCL; namespace Examples { public class TestAdvElsCallback { const int T = 6; /* Number of time periods */ /****DATA****/ int[] DEMAND = { 1, 3, 5, 3, 4, 2}; /* Demand per period */ int[] SETUPCOST = {17,16,11, 6, 9, 6}; /* Setup cost per period */ int[] PRODCOST = { 5, 3, 2, 1, 3, 1}; /* Production cost per period */ int[,] D = new int[T,T]; /* Total demand in periods t1 - t2 */ XPRBvar[] prod = new XPRBvar[T]; /* Production in period t */ XPRBvar[] setup = new XPRBvar[T]; /* Setup in period t */ XPRBprob p = new XPRBprob("ElsC"); /* Initialize a new problem in BCL */ /***********************************************************************/ public void modEls() { int s,t,k; XPRBexpr cobj,le; for(s=0;s= D[0,t]); } } /**************************************************************************/ /* Cut generation loop at the tree node: */ /* get the solution values */ /* identify and set up violated constraints */ /* add cuts to the matrix */ /**************************************************************************/ public int cbNode(XPRSprob xprsp, object mobj) { BCLconstant.XPRBprobStruct mo; double objval; /* Objective value */ int t,l; int ncut; /* Counters for cuts */ double[] solprod = new double[T]; double[] solsetup = new double[T]; /* Solution values for var.s prod & setup */ double ds; int depth,node; XPRBcut[] cut = new XPRBcut[T]; XPRBexpr le; mo=(BCLconstant.XPRBprobStruct)mobj; ncut = 0; depth = xprsp.NodeDepth; node = xprsp.Nodes; /* Get the solution values */ mo.prob.beginCB(xprsp); mo.prob.sync(BCLconstant.XPRB_XPRS_SOL); for(t=0;t= D[0][l] */ if(ds < D[0,l] - mo.tol) { le = new XPRBexpr(0); for(t=0;t<=l;t++) { if (solprod[t] < D[t,l]*solsetup[t] + mo.tol) le += prod[t]; else le += D[t,l]*setup[t]; } cut[ncut] = mo.prob.newCut(le >= D[0,l]); ncut++; } } /* Add cuts to the problem */ if(ncut>0) { mo.prob.addCuts(cut, ncut); objval = xprsp.LPObjVal; System.Console.Write("Cuts added : " + ncut + " (depth " + depth + ", node "); System.Console.WriteLine(node + "), obj. " + objval); } mo.prob.endCB(); return 0; } /***********************************************************************/ public void treeCutGen() { IntPtr oprob; BCLconstant.XPRBprobStruct mo; double feastol; int starttime,t; CutmgrCallback del = new CutmgrCallback(cbNode); XPRSprob xprsp = p.getXPRSprob(); starttime=XPRB.getTime(); xprsp.LPLog = 0; xprsp.MIPLog = 3; xprsp.CutStrategy = 0; xprsp.Presolve = 0; xprsp.ExtraRows = 5000; feastol = xprsp.FeasTol; feastol*= 10; mo.prob=p; mo.tol=feastol; p.setCutMode(1); xprsp.AddCutmgrCallback(del, (object)mo); p.mipOptimize(); /* Solve the MIP */ System.Console.Write("(" + (XPRB.getTime()-starttime)/1.000 + " sec) Global status "); System.Console.WriteLine(p.getMIPStat() + ", best solution: " + p.getObjVal()); for(t=0;t