(!******************************************************* Mosel Example Problems ====================== file elscb.mos `````````````` Economic lot sizing, ELS, problem Basic version with large data set and logging callbacks. Economic lot sizing (ELS) considers production planning over a given planning horizon. In every period, there is a given demand for every product that must be satisfied by the production in this period and by inventory carried over from previous periods. A set-up cost is associated with production in a period, and the total production capacity per period is limited. The unit production cost per product and time period is given. There is no inventory or stock-holding cost. - Using the GAPNOTIFY callback - (c) 2012 Fair Isaac Corporation author: S. Heipcke, Sep. 2012, rev. Sep. 2014 *******************************************************!) model "ELS with logging callbacks" uses "mmxprs","mmsystem" parameters DATAFILE = "els4.dat" T = 60 P = 4 end-parameters forward public function cb_node: boolean forward public procedure cb_intsol forward public procedure cb_gapnotify(rt,at,aot,abt:real) declarations TIMES = 1..T ! Range of time PRODUCTS = 1..P ! Set of products DEMAND: array(PRODUCTS,TIMES) of integer ! Demand per period SETUPCOST: array(TIMES) of integer ! Setup cost per period PRODCOST: array(PRODUCTS,TIMES) of integer ! Production cost per period CAP: array(TIMES) of integer ! Production capacity per period D: array(PRODUCTS,TIMES,TIMES) of integer ! Total demand in periods t1 - t2 produce: array(PRODUCTS,TIMES) of mpvar ! Production in period t setup: array(PRODUCTS,TIMES) of mpvar ! Setup in period t solprod: array(PRODUCTS,TIMES) of real ! Sol. values for var.s produce solsetup: array(PRODUCTS,TIMES) of real ! Sol. values for var.s setup starttime,logtime, objval, mipgap: real end-declarations initializations from DATAFILE DEMAND SETUPCOST PRODCOST CAP end-initializations forall(p in PRODUCTS,s,t in TIMES) D(p,s,t):= sum(k in s..t) DEMAND(p,k) ! Objective: minimize total cost MinCost:= sum(t in TIMES) (SETUPCOST(t) * sum(p in PRODUCTS) setup(p,t) + sum(p in PRODUCTS) PRODCOST(p,t) * produce(p,t) ) ! Satisfy the total demand forall(p in PRODUCTS,t in TIMES) Dem(p,t):= sum(s in 1..t) produce(p,s) >= sum (s in 1..t) DEMAND(p,s) ! If there is production during t then there is a setup in t forall(p in PRODUCTS, t in TIMES) ProdSetup(p,t):= produce(p,t) <= D(p,t,getlast(TIMES)) * setup(p,t) ! Capacity limits forall(t in TIMES) Capacity(t):= sum(p in PRODUCTS) produce(p,t) <= CAP(t) ! Variables setup are 0/1 forall(p in PRODUCTS, t in TIMES) setup(p,t) is_binary ! Uncomment to get detailed MIP output ! setparam("XPRS_VERBOSE", true) ! All cost data are integer, we therefore only need to search for integer ! solutions setparam("XPRS_MIPADDCUTOFF", -0,999) ! Setting callbacks for logging setcallback(XPRS_CB_INTSOL, "cb_intsol") setcallback(XPRS_CB_PRENODE, "cb_node") mipgap:= 0,1 setparam("XPRS_MIPRELGAPNOTIFY", mipgap) setcallback(XPRS_CB_GAPNOTIFY, "cb_gapnotify") starttime:=gettime logtime:=starttime minimize(MinCost) ! Solve the problem writeln("Time: ", gettime-starttime, "sec, Nodes: ", getparam("XPRS_NODES"), ", Solution: ", getobjval) write("Period setup ") forall(p in PRODUCTS) write(strfmt(p,-7)) forall(t in TIMES) do write("\n ", strfmt(t,2), strfmt(getsol(sum(p in PRODUCTS) setup(p,t)),8), " ") forall(p in PRODUCTS) write(getsol(produce(p,t)), " (",DEMAND(p,t),") ") end-do writeln !***************************************************************** ! Function called at every B&B node, return value 'true' marks node as infeasible public function cb_node: boolean timeNow:=gettime if timeNow-logtime>=5 then bbound:= getparam("XPRS_BESTBOUND") actnodes:= getparam("XPRS_ACTIVENODES") writeln(timeNow-starttime, "sec. Best bound:", bbound, " best sol.:", if(getparam("XPRS_MIPSTATUS")=XPRS_MIP_SOLUTION, text(objval), text(" - ")), " active nodes: ", actnodes) logtime:=timeNow end-if returned:= false end-function ! Store and display new solution public procedure cb_intsol lastobjval:=objval objval:= getparam("XPRS_LPOBJVAL") ! Retrieve current objective value writeln(gettime-starttime, "sec. New solution: ", objval) ! If model runs for more than 60sec and new solution is just slightly ! better, then interrupt search if gettime-starttime>60 and abs(lastobjval-objval)<=5 then writeln("Stopping search") stopoptimize(XPRS_STOP_USER) end-if end-procedure ! Notify about gap changes ! With the setting XPRS_MIPRELGAPNOTIFY=0,1 this routine will be called first ! when gap reaches 10%. We then reset the target, so that it gets called ! once more at a 2% smaller gap public procedure cb_gapnotify(rt,at,aot,abt:real) writeln(gettime-starttime, "sec. Reached ", 100*mipgap, "% gap.") mipobj:= getparam("XPRS_MIPOBJVAL") bbound:= getparam("XPRS_BESTBOUND") relgap:= abs( (mipobj-bbound)/mipobj ) if relgap<=0,1 then ! Call "setgndata" to return new target value to the Optimizer mipgap-=0,02 setgndata(XPRS_GN_RELTARGET, mipgap) end-if if relgap<=0,02 then setgndata(XPRS_GN_RELTARGET, -1) ! Don't call gapnotify callback any more end-if end-procedure end-model