(!****************************************************** Mosel Example Problems ====================== file k5nephew_ka.mos ````````````````` Distributing wine barrels among nephews A farmer wishes to distribute his 45 wine barrels among his 5 nephews. 9 barrels are full, 9 filled to 3/4, 9 half-full, 9 filled to a quarter, and 9 are empty. Each nephew is to receive the same number of barrels and the same volume of wine. Furthermore, each nephew must receive at least one barrel of every type and no two of the nephews must be allocated exactly the same number of barrels of every fill type. (c) 2008 Fair Isaac Corporation author: S. Heipcke, March 2005, rev. Jan. 2018 *******************************************************!) model "K-5 Nephew (CP)" uses "kalis" setparam("KALIS_DEFAULT_UB", 100000) declarations NN = 5; NT = 5 NEPHEWS = 1..NN ! Nephews TYPES = 1..NT ! Contents types of wine barrels BARRELS = 45 COEF: array(TYPES) of integer ! Factors for "all_different" constraint FILL: array(TYPES) of integer ! Fill level of barrels give: array(NEPHEWS,TYPES) of cpvar ! Barrels of type t for every nephew p: array(NEPHEWS) of cpvar ! 'Pattern': value of the product ! c*give(n,t) end-declarations FILL:: [100, 75, 50, 25, 0] COEF:: [10000, 1000, 100, 10, 1] ! Bounds and names for variables forall(n in NEPHEWS, t in TYPES) do setname(give(n,t),"GIVE["+n+","+t+"]") 1 <= give(n,t); give(n,t) <= NN end-do forall(t in TYPES) setname(p(t),"PRODUCT["+t+"]") ! Barrels per nephew forall(n in NEPHEWS) sum(t in TYPES) give(n,t) = round(BARRELS/NN) forall(t in TYPES) sum(n in NEPHEWS) give(n,t) = round(BARRELS/NN) ! Equilibrated contents forall(n in NEPHEWS) sum(t in TYPES) FILL(t)*give(n,t) = round(BARRELS/NN * (sum(t in TYPES) FILL(t))/NT) ! Every nephew receives a different number of barrels of any given type ! (that is, a different pattern for every nephew) forall(n in NEPHEWS) do 1 <= p(n); p(n) <= NN*COEF(1) sum(t in TYPES) COEF(t)*give(n,t) = p(n) end-do all_different(p) ! Branching strategy cp_set_branching(split_domain(KALIS_SMALLEST_DOMAIN, KALIS_MIN_TO_MAX, give, true, 2)) ! Solve the problem if not(cp_find_next_sol) then writeln("Problem is infeasible") exit(1) end-if ! Solution printing forall(n in NEPHEWS) do write(n,": ") forall(t in TYPES) write( give(n,t), " " ) writeln end-do end-model