generic_binary_constraint
Purpose
This constraint can be used to propagate a user-defined constraint over two variables (its propagation is based on the AC2001 algorithm (cf.
[Bes01]).
Synopsis
function generic_binary_constraint(v1:cpvar,v2:cpvar, fctname:string) : cpctr
Arguments
|
v1
|
the first decision variable
|
|
v2
|
the second decision variable
|
|
fctname
|
name of the function specifying the user-defined constraint, such a function necessarily takes two cpvar as arguments and returns a Boolean.
|
Return value
A binary constraint over 'v1' and 'v2'
Example
The following example shows how to use the generic_binary_constraint constraint to solve the classical Euler Knight Tour problem:
model "Euler Knight Moves"
uses "kalis"
parameters
S = 8 ! No. of rows/columns
end-parameters
N:= S * S ! Total number of cells
setparam("KALIS_DEFAULT_LB", 0)
setparam("KALIS_DEFAULT_UB", N-1)
forward public function valid_knight_move(a:integer, b:integer): boolean
declarations
PATH = 1..N ! Cells on the board
pos: array(PATH) of cpvar ! Position p in tour
end-declarations
! Setting names of decision variables
forall(i in PATH) setname(pos(i), "Position"+i)
! Fix the start position
pos(1) = 0
! Each cell is visited once
all_different(pos, KALIS_GEN_ARC_CONSISTENCY)
! The knight's path obeys the chess rules for valid knight moves
forall(i in 1..N-1)
generic_binary_constraint(pos(i), pos(i+1), "valid_knight_move")
generic_binary_constraint(pos(N), pos(1), "valid_knight_move")
! Setting enumeration parameters
cp_set_branching(probe_assign_var(KALIS_SMALLEST_MIN,
KALIS_MAX_TO_MIN, pos, 14))
! Search for up to NBSOL solutions
solct:= 0
if not cp_find_next_sol then
writeln("No solution")
else
writeln(pos)
end-if
! **** Test whether the move from a to b is admissible ****
public function valid_knight_move(a:integer, b:integer): boolean
declarations
xa,ya,xb,yb,delta_x,delta_y: integer
end-declarations
xa := a div S
ya := a mod S
xb := b div S
yb := b mod S
delta_x := abs(xa-xb)
delta_y := abs(ya-yb)
returned := (delta_x<=2) and (delta_y<=2) and (delta_x+delta_y=3)
end-function
end-model
© 2001-2022 Fair Isaac Corporation. All rights reserved. This documentation is the property of Fair Isaac Corporation ("FICO"). Receipt or possession of this documentation does not convey rights to disclose, reproduce, make derivative works, use, or allow others to use it except solely for internal evaluation purposes to determine whether to purchase a license to the software described in this documentation, or as otherwise set forth in a written software license agreement between you and FICO (or a FICO affiliate). Use of this documentation and the software described in it must conform strictly to the foregoing permitted uses, and no other use is permitted.
