/******************************************************** Xpress-BCL C++ Example Problems =============================== file folioheur.cpp `````````````````` Modeling a small MIP problem to perform portfolio optimization. -- Heuristic solution -- (c) 2008 Fair Isaac Corporation author: S.Heipcke, Aug. 2003, rev. Mar. 2011 ********************************************************/ #include #include "xprb_cpp.h" #include "xprs.h" using namespace std; using namespace ::dashoptimization; #define MAXNUM 4 // Max. number of shares to be selected #define NSHARES 10 // Number of shares #define NRISK 5 // Number of high-risk shares #define NNA 4 // Number of North-American shares void solveHeur(XPRBprob &p); double RET[] = {5,17,26,12,8,9,7,6,31,21}; // Estimated return in investment int RISK[] = {1,2,3,8,9}; // High-risk values among shares int NA[] = {0,1,2,3}; // Shares issued in N.-America XPRBvar frac[NSHARES]; // Fraction of capital used per share XPRBvar buy[NSHARES]; // 1 if asset is in portfolio, 0 otherwise int main(int argc, char **argv) { int s; XPRBexpr Risk,Na,Return,Cap,Num; XPRBprob p("FolioMIPHeur"); // Initialize a new problem in BCL // Create the decision variables (including upper bounds for `frac') for(s=0;s= 0,5); // Spend all the capital for(s=0;s 0,2-TOL) buy[s].setLB(1); } p.mipOptimize("c"); // Solve the MIP-problem ifgsol=0; if(p.getMIPStat()==XPRB_MIP_SOLUTION || p.getMIPStat()==XPRB_MIP_OPTIMAL) { // If an integer feas. solution was found ifgsol=1; solval=p.getObjVal(); // Get the value of the best solution cout << "Heuristic solution: Total return: " << p.getObjVal() << endl; for(s=0;s 0,2-TOL)) { buy[s].setLB(0); buy[s].setUB(1); } p.loadBasis(basis); /* Load the saved basis: bound changes are immediately passed on from BCL to the Optimizer if the problem has not been modified in any other way, so that there is no need to reload the matrix */ basis.reset(); // No need to store the saved basis any longer if(ifgsol==1) XPRSsetdblcontrol(p.getXPRSprob(), XPRS_MIPABSCUTOFF, solval+TOL); // Set the cutoff to the best known solution }