/******************************************************** BCL Example Problems ==================== file xbelsc.c ````````````` Economic lot sizing, ELS, problem, solved by adding (l,S)-inequalities) in a branch-and-cut heuristic (using the cut manager). ELS considers production planning over a horizon of T periods. In period t, t=1,...,T, there is a given demand DEMAND[t] that must be satisfied by production prod[t] in period t and by inventory carried over from previous periods. There is a set-up up cost SETUPCOST[t] associated with production in period t. The unit production cost in period t is PRODCOST[t]. There is no inventory or stock-holding cost. *** This model cannot be run with a Community Licence *** (c) 2008-2024 Fair Isaac Corporation author: S.Heipcke, 2005, rev. Mar. 2011 ********************************************************/ #include #include #include "xprb.h" #include "xprs.h" #define T 6 /* Number of time periods */ /****DATA****/ int DEMAND[] = { 1, 3, 5, 3, 4, 2}; /* Demand per period */ int SETUPCOST[] = {17,16,11, 6, 9, 6}; /* Setup cost per period */ int PRODCOST[] = { 5, 3, 2, 1, 3, 1}; /* Production cost per period */ int D[T][T]; /* Total demand in periods t1 - t2 */ XPRBvar prod[T]; /* Production in period t */ XPRBvar setup[T]; /* Setup in period t */ struct myobj { XPRBprob prob; double tol; }; /***********************************************************************/ void mod_els(XPRBprob prob) { int s,t,k; XPRBctr ctr; for(s=0;sprob, oprob); ncut = 0; XPRSgetintattrib(oprob,XPRS_NODEDEPTH, &depth); XPRSgetintattrib(oprob,XPRS_NODES, &node); /* Get the solution values */ XPRBsync(mo->prob, XPRB_XPRS_SOL); for(t=0;ttol) ds += solprod[t]; else ds += D[t][l]*solsetup[t]; } /* Add the violated inequality: the minimum of the actual production prod[t] and the maximum potential production D[t][l]*setup[t] in periods 0 to l must at least equal the total demand in periods 0 to l. sum(t=1:l) min(prod[t], D[t][l]*setup[t]) >= D[0][l] */ if(ds < D[0][l] - mo->tol) { cut[ncut] = XPRBnewcut(mo->prob, XPRB_G, 1); XPRBaddcutterm(cut[ncut], NULL, D[0][l]); for(t=0;t<=l;t++) { if (solprod[t] < D[t][l]*solsetup[t] + mo->tol) XPRBaddcutterm(cut[ncut], prod[t], 1); else XPRBaddcutterm(cut[ncut], setup[t], D[t][l]); } ncut++; } } /* Add cuts to the problem */ if(ncut>0) { XPRBaddcuts(mo->prob, cut, ncut); XPRSgetdblattrib(oprob, XPRS_LPOBJVAL, &objval); printf("Cuts added : %d (depth %d, node %d, obj. %g)\n", ncut, depth, node, objval); } XPRBendcb(mo->prob); return 0; } /***********************************************************************/ void tree_cut_gen(XPRBprob prob) { XPRSprob oprob; struct myobj mo; double feastol; int starttime,t; starttime=XPRBgettime(); oprob = XPRBgetXPRSprob(prob); /* Get Optimizer problem */ XPRSsetintcontrol(oprob, XPRS_LPLOG, 0); XPRSsetintcontrol(oprob, XPRS_MIPLOG, 3); XPRSsetintcontrol(oprob, XPRS_CUTSTRATEGY, 0); /* Disable automatic cuts */ XPRSsetintcontrol(oprob, XPRS_PRESOLVE, 0); /* Switch presolve off */ XPRSsetintcontrol(oprob, XPRS_EXTRAROWS, 5000); /* Reserve extra rows */ XPRSgetdblcontrol(oprob, XPRS_FEASTOL, &feastol); /* Get zero tolerance */ feastol*= 10; mo.prob=prob; mo.tol=feastol; XPRBsetcutmode(prob,1); XPRSsetcbcutmgr(oprob, cb_node, &mo); XPRBmipoptimize(prob,""); /* Solve the MIP */ printf("(%g sec) MIP status %d, best solution: %1,3f\n", (XPRBgettime()-starttime)/1000.0, XPRBgetmipstat(prob), XPRBgetobjval(prob)); for(t=0;t