// (c) 2024-2025 Fair Isaac Corporation #include // For throwing exceptions #include using namespace xpress; using namespace xpress::objects; using xpress::objects::utils::div; using xpress::objects::utils::mul; using xpress::objects::utils::pow; using xpress::objects::utils::scalarProduct; using xpress::objects::utils::sum; /** * A craftsman makes small wooden boxes for sale. He has four different types of * box, and can make each type in any size (keeping all the dimensions in * proportion), but all boxes of the same type must have the same size. The * profit he makes on a box depends on the size. He has only a limited amount of * the necessary wood available and a limited amount of time in the week to do * the work. How many boxes should he make, and what size should they be, in * order to maximize his profit? */ // A box. class Box { public: const std::string name; // The name of this box. const double lengthCoeff; // Relative length of this box. const double widthCoeff; // Relative width of this box. const double heightCoeff; // Relative height of this box. const double profitCoeff; // Coefficient for the profit of this box, relative // to its size. const double timeCoeff; // Coefficient for the production time of this box, // relative to its ply. // Constructor Box(std::string name, double lengthCoeff, double widthCoeff, double heightCoeff, double profitCoeff, double timeCoeff) : name(name), lengthCoeff(lengthCoeff), widthCoeff(widthCoeff), heightCoeff(heightCoeff), profitCoeff(profitCoeff), timeCoeff(timeCoeff) {} // Override toString() method std::string toString() const { return name; } // resources required: nrBattens = size * 4 * (lengthCoeff + widhtCoeff + // heightCoeff) double getBattensCoeff() const { return 4 * (lengthCoeff + widthCoeff + heightCoeff); } // resources required: ply = size^2 * 2 * (lengthCoeff * widthCoeff + widthC * // heightC + heightC * lengthC) double getPlyCoeff() const { return 2 * (lengthCoeff * widthCoeff + widthCoeff * heightCoeff + heightCoeff * lengthCoeff); } }; // The boxes used in this example. const std::vector boxTypeArray = { Box("Cube", 1, 1, 1, 20, 1), Box("Oblong", 1, 2, 1, 27.3, 1), Box("Flat", 4, 4, 1, 90, 1), Box("Economy", 1, 2, 1, 10, 0,2)}; // The resource constraints used in this example. const double maxSize = 2; const int maxNumProducedPerBoxType = 6; const double maxNrBattens = 200; const double maxPly = 210; const double maxTime = 35; int main() { try { // Create a problem instance with verbose messages printed to Console XpressProblem prob; prob.callbacks.addMessageCallback(XpressProblem::console); // The number of each of the type of boxes that should be produced std::vector numProduced = prob.addVariables(boxTypeArray.size()) .withType(ColumnType::Integer) .withName("numProduced_%d") .withUB(maxNumProducedPerBoxType) .toArray(); // The relative size (a multiplier of length/width/height) of each of the // box types to produce std::vector size = prob.addVariables(boxTypeArray.size()) .withType(ColumnType::Continuous) // This is the default value so // not required to specify .withName("size_%d") .withUB(maxSize) .toArray(); /* Resource Availabililty Constraints */ // Construct Expression for ply required for each type of box std::vector plyPerBoxType(boxTypeArray.size()); for (std::size_t i = 0; i < boxTypeArray.size(); i++) { // plyPerBoxType = numProduced * size^2 * plyCoeff plyPerBoxType[i] = mul(numProduced[i], pow(size[i], 2)) * boxTypeArray[i].getPlyCoeff(); } // Inspect the constructed Expression std::cout << "Total ply: " << sum(plyPerBoxType).toString() << std::endl; prob.addConstraint(sum(plyPerBoxType) <= maxPly); /* Next, we construct a same type of resource constraint as above, but then * for the total battens instead of ply. Except, instead of using sum and * mul, we use scalarProduct. */ // First collect the BattensCoefficients into one vector. We do this using // the std::transform function along with a lambda function from Box to // double (similar to `map` function in Python if you are familiar) std::vector battensCoeffs(boxTypeArray.size()); std::transform(boxTypeArray.begin(), boxTypeArray.end(), battensCoeffs.begin(), [](Box box) { return box.getBattensCoeff(); }); // battensPerBox = numProduced * size * battensCoeff prob.addConstraint(scalarProduct(numProduced, size, battensCoeffs) <= maxNrBattens); // Again a similar resource constraint as above, now for total time. // We use a different way to use sum (now with a lambda function) Expression totalTime = sum(boxTypeArray.size(), [&](auto i) { // timeNeededForBox = 1 + timeCoeff * 1,5^(ply/10) Expression plyNeeded = pow(size[i], 2) * boxTypeArray[i].getPlyCoeff(); Expression timeNeeded = 1 + mul(boxTypeArray[i].timeCoeff, pow(1.5, div(plyNeeded, 10))); return numProduced[i] * timeNeeded; }); // Inspect the constructed Expression std::cout << "Total time: " << totalTime.toString() << std::endl; prob.addConstraint(totalTime <= maxTime); /* Construct the objective */ Expression totalProfit = sum(boxTypeArray.size(), [&](auto i) { // profit = numProduced * size^1,5 * profitCoeff return numProduced[i] * pow(size[i], 1,5) * boxTypeArray[i].profitCoeff; }); // Inspect the constructed Expression std::cout << "Total profit: " << totalProfit.toString() << std::endl; // To make the objective linear, just maximize the objtransfercol and add // non-linear constraint Variable objtransfercol = prob.addVariable(ColumnType::Continuous, "objTransferCol"); prob.setObjective(objtransfercol, xpress::ObjSense::Maximize); // Add the objective transfer row: objtransfercol = totalProfit prob.addConstraint(objtransfercol == totalProfit); // Dump the problem to disk so that we can inspect it. prob.writeProb("Boxes02.lp"); // By default we will solve to global optimality, uncomment for an MISLP // solve to local optimality prob.setNLPSolver(XPRS_NLPSOLVER_LOCAL); // Solve prob.optimize(); // Check the solution status if (prob.attributes.getSolStatus() != SolStatus::Optimal && prob.attributes.getSolStatus() != SolStatus::Feasible) { std::ostringstream oss; oss << prob.attributes .getSolStatus(); // Convert xpress::SolStatus to String throw std::runtime_error("Optimization failed with status " + oss.str()); } // Get the solution and print it std::vector sol = prob.getSolution(); std::cout << std::endl << "*** Solution ***" << std::endl; std::cout << "Objective: " << prob.attributes.getObjVal() << std::endl; // Print out the variables for (std::size_t i = 0; i < boxTypeArray.size(); ++i) { if (numProduced[i].getValue(sol) > 0.0) { std::cout << "Producing " << numProduced[i].getValue(sol) << " " << boxTypeArray[i].toString() << " boxes of size " << size[i].getValue(sol) << "." << std::endl; } } return 0; } catch (std::exception &e) { std::cout << "Exception: " << e.what() << std::endl; return -1; } }