# General constraints example using the Xpress And/Or operators and # the problem.addgencons() API method. # # Solves a simple SAT problem by finding the solution with the fewest # 'True' variables that satisfy all clauses. # # (C) 1983-2025 Fair Isaac Corporation import xpress as xp formulate_using_andor = True # If True - will use xpress operators, else - will use problem.addgencons. p = xp.problem() N = 10 k = 5 x = [p.addVariable(vartype=xp.binary) for _ in range(N)] if formulate_using_andor: # Here we use the And/Or operators of the Python interface to create a new # optimization problem. # At most one of each pair can be True. con0 = [(x[i] & x[i+1]) == 0 for i in range(0, N-1, 2)] # At least a quarter of all OR clauses on continuous groups of k # clauses must be True. con1 = xp.Sum(xp.Or(*(x[i:i+k])) for i in range(N-k)) >= N/4 p.addConstraint(con0, con1) else: # Here we use the API function problem.addgencons(). # Creates a continuous list despite the 2 step in range(). y_and = [p.addVariable(vartype=xp.binary) for i in range(0, N - 1, 2)] y_or = [p.addVariable(vartype=xp.binary) for i in range(N - k)] p.addGenCons([xp.gencons_and] * (N // 2) + [xp.gencons_or] * (N - k), y_and + y_or, # two list of resultants [2 * i for i in range(N // 2)] + # colstart is the list [0, 2, 4...] for the AND constraint [2 * (N // 2) + k * i for i in range(N - k)], # ... and then the list [0, k, 2*k...] displaced by 2N x[:2 * (N // 2)] + # consider all original variables in this order [x[i + j] for j in range(k) for i in range(N - k)]) # and then variables [0..k-1, 1..k, 2..k+1, ...] # Set time limit to 5 seconds. p.controls.timelimit = 5 p.optimize() print("Solution: x = ", p.getSolution())