| (!****************************************************************
   CP example problems
   ===================
   
   file knapsackalld.mos
   `````````````````````
   Knapsack problem with additional alldifferent 
   constraint solved using linear relaxations.
   - Using default settings for relaxation -
   (c) 2009 Artelys S.A. and Fair Isaac Corporation
       Creation: 2009, rev. Mar. 2013
*****************************************************************!)
model "Knapsack with side constraints"
 uses "kalis"
 declarations
  VALUES = {1,3,8,9,12}
  R = 1..4
  x: array(R) of cpvar              ! Decision variables
  benefit: cpvar                    ! The objective to minimize
 end-declarations
! Enable output printing
 setparam("kalis_verbose_level", 1)
! Setting name of variables for pretty printing
 forall(i in R) setname(x(i),"x"+i) 
 setname(benefit,"benefit")
! Set initial domains for variables
 forall(i in R) setdomain(x(i), VALUES)
! Knapsack constraints
 3*x(1) + 5*x(2) + 2*x(3) <= 50
 2*x(1) + x(3) + 5*x(4) <= 75
! Additional global constraint
 all_different(union(i in R) {x(i)})
! Objective function
 benefit = 5*x(1) + 8*x(2) + 4*x(3) + x(4)
! Initial propagation
 res := cp_propagate
! Display bounds on objective after constraint propagation 
 writeln("Constraints propagation objective ", benefit)
! **** Linear relaxation ****
! Enable automatic linear relaxations
 setparam("kalis_auto_relax", true)
  
! Solve the problem
 if (cp_maximize(benefit)) then  
  cp_show_sol                      ! Output optimal solution to screen
 end-if
end-model
 | 
| (!****************************************************************
   CP example problems
   ===================
   
   file knapsackalld2.mos
   ``````````````````````
   Knapsack problem with additional alldifferent 
   constraint solved using linear relaxations.
   - Configuring a linear relaxation -
   (c) 2009 Artelys S.A. and Fair Isaac Corporation
       Creation: 2009, rev. Mar. 2013        
*****************************************************************!)
model "Knapsack with side constraints"
 uses "kalis", "mmsystem"
 declarations
  VALUES = {1,3,8,9,12}
  R = 1..4
  x: array(R) of cpvar              ! Decision variables
  benefit: cpvar                    ! The objective to minimize
 end-declarations
! Enable output printing
 setparam("kalis_verbose_level", 1)
! Setting name of variables for pretty printing
 forall(i in R) setname(x(i),"x"+i) 
 setname(benefit,"benefit")
! Set initial domains for variables
 forall(i in R) setdomain(x(i), VALUES)
! Knapsack constraints
 3*x(1) + 5*x(2) + 2*x(3) <= 50
 2*x(1) + x(3) + 5*x(4) <= 75
! Additional global constraint
 all_different(union(i in R) {x(i)})
! Objective function
 benefit = 5*x(1) + 8*x(2) + 4*x(3) + x(4)
! Initial propagation
 res := cp_propagate
! Display bounds on objective after constraint propagation 
 writeln("Constraints propagation objective ", benefit)
! **** Linear relaxation ****
 declarations
  myrelaxall: cplinrelax
 end-declarations
! Build an automatic 'LP' oriented linear relaxation
 myrelaxall:= cp_get_linrelax(0)
  
! Output the relaxation to the screen
 cp_show_relax(myrelaxall)  
 mysolver:= get_linrelax_solver(myrelaxall, benefit, KALIS_MAXIMIZE, 
                KALIS_SOLVE_AS_LP, KALIS_TREENODE_RELAX_SOLVER)
! Define the linear relaxation 
 cp_add_linrelax_solver(mysolver)
! Define a 'MIP' style branching scheme using the solution of the relaxation
 cp_set_branching(assign_var(KALIS_LARGEST_REDUCED_COST(mysolver), 
                             KALIS_NEAREST_RELAXED_VALUE(mysolver)))
! Solve the problem
 starttime:= gettime
 if (cp_maximize(benefit)) then  
  write(gettime-starttime, "sec. ")
  cp_show_sol                      ! Output optimal solution to screen
 end-if
end-model
 | 
| (!****************************************************************
   CP example problems
   ===================
   
   file knapsackalld3.mos
   ``````````````````````
   Knapsack problem with additional alldifferent 
   constraint solved using linear relaxations.
   - User-defined linear relaxation -
   (c) 2009 Artelys S.A. and Fair Isaac Corporation
       Creation: 2009, rev. Mar. 2013        
*****************************************************************!)
model "Knapsack with side constraints"
 uses "kalis", "mmsystem"
 declarations
  VALUES = {1,3,8,9,12}
  R = 1..4
  x: array(R) of cpvar              ! Decision variables
  benefit: cpvar                    ! The objective to minimize
 end-declarations
! Enable output printing
 setparam("kalis_verbose_level", 1)
! Setting name of variables for pretty printing
 forall(i in R) setname(x(i),"x"+i) 
 setname(benefit,"benefit")
! Set initial domains for variables
 forall(i in R) setdomain(x(i), VALUES)
! Knapsack constraints
 3*x(1) + 5*x(2) + 2*x(3) <= 50
 2*x(1) + x(3) + 5*x(4) <= 75
! Additional global constraint
 all_different(union(i in R) {x(i)})
! Objective function
 benefit = 5*x(1) + 8*x(2) + 4*x(3) + x(4)
! Initial propagation
 res := cp_propagate
! Display bounds on objective after constraint propagation 
 writeln("Constraints propagation objective ", benefit)
! **** Linear relaxation ****
 declarations
  myrelax: cplinrelax
 end-declarations
! Build an 'LP' oriented linear relaxation
 myrelax:= get_linrelax(all_different(union(i in R) {x(i)}), 0)
 myrelax += get_linrelax(3*x(1) + 5*x(2) + 2*x(3) <= 50, 0)
 myrelax += get_linrelax(2*x(1) + x(3) + 5*x(4) <= 75, 0)
 myrelax += get_linrelax(benefit - (5*x(1) + 8*x(2) + 4*x(3) + x(4)) = 0, 0)
   
 mysolver:= get_linrelax_solver(myrelax, benefit, KALIS_MAXIMIZE, 
                KALIS_SOLVE_AS_LP, KALIS_TREENODE_RELAX_SOLVER)
! Output the relaxation to the screen (after creation of solver to see all!)
 cp_show_relax(myrelax)  
! Define the linear relaxation 
 cp_add_linrelax_solver(mysolver)
! Define a 'MIP' style branching scheme using the solution of the relaxation
 cp_set_branching(assign_var(KALIS_LARGEST_REDUCED_COST(mysolver), 
                             KALIS_NEAREST_RELAXED_VALUE(mysolver)))
! Solve the problem
 starttime:= gettime
 if (cp_maximize(benefit)) then  
  write(gettime-starttime, "sec. ")
  cp_show_sol                      ! Output optimal solution to screen
 end-if
end-model
 | 
| (!****************************************************************
   CP example problems
   ===================
   
   file knapsackalld3.mos
   ``````````````````````
   Knapsack problem with additional alldifferent 
   constraint solved using linear relaxations.
   - User-defined linear relaxation -
   (c) 2009 Artelys S.A. and Fair Isaac Corporation
       Creation: 2009, rev. Mar. 2013        
*****************************************************************!)
model "Knapsack with side constraints"
 uses "kalis", "mmsystem"
 declarations
  VALUES = {1,3,8,9,12}
  R = 1..4
  x: array(R) of cpvar              ! Decision variables
  benefit: cpvar                    ! The objective to minimize
 end-declarations
! Enable output printing
 setparam("kalis_verbose_level", 1)
! Setting name of variables for pretty printing
 forall(i in R) setname(x(i),"x"+i) 
 setname(benefit,"benefit")
! Set initial domains for variables
 forall(i in R) setdomain(x(i), VALUES)
! Knapsack constraints
 3*x(1) + 5*x(2) + 2*x(3) <= 50
 2*x(1) + x(3) + 5*x(4) <= 75
! Additional global constraint
 all_different(union(i in R) {x(i)})
! Objective function
 benefit = 5*x(1) + 8*x(2) + 4*x(3) + x(4)
! Initial propagation
 res := cp_propagate
! Display bounds on objective after constraint propagation 
 writeln("Constraints propagation objective ", benefit)
! **** Linear relaxation ****
 declarations
  myrelax: cplinrelax
 end-declarations
! Build a user-defined linear relaxation
! Formulation of 'alldifferent':
 forall(val in VALUES)
  myrelax += sum(i in R | contains(x(i),val)) get_indicator(x(i), val) <= 1
 forall(i in R)
  myrelax += sum(val in VALUES | contains(x(i),val)) get_indicator(x(i), val) = 1
! Reformulation of linear constraints 
 myrelax +=
  3*sum(val in VALUES | contains(x(1),val)) val*get_indicator(x(1), val) +
  5*sum(val in VALUES | contains(x(2),val)) val*get_indicator(x(2), val) +
  2*sum(val in VALUES | contains(x(3),val)) val*get_indicator(x(3), val) <= 50 
 myrelax += 
   2*sum(val in VALUES | contains(x(1),val)) val*get_indicator(x(1), val) +
   sum(val in VALUES | contains(x(3),val)) val*get_indicator(x(3), val) +
   2*sum(val in VALUES | contains(x(4),val)) val*get_indicator(x(4), val) <= 75 
 myrelax += benefit - 
  (5*sum(val in VALUES | contains(x(1),val)) val*get_indicator(x(1), val) +
   8*sum(val in VALUES | contains(x(2),val)) val*get_indicator(x(2), val) +
   4*sum(val in VALUES | contains(x(3),val)) val*get_indicator(x(3), val) +
   sum(val in VALUES | contains(x(4),val)) val*get_indicator(x(4), val)) = 0 
  
 mysolver:= get_linrelax_solver(myrelax, benefit, KALIS_MAXIMIZE, 
                KALIS_SOLVE_AS_LP, KALIS_TREENODE_RELAX_SOLVER)
! Output the relaxation to the screen (after creation of solver to see all!)
 cp_show_relax(myrelax)  
! Define the linear relaxation 
 cp_add_linrelax_solver(mysolver)
! Define a 'MIP' style branching scheme using the solution of the relaxation
 cp_set_branching(assign_var(KALIS_LARGEST_REDUCED_COST(mysolver), 
                             KALIS_NEAREST_RELAXED_VALUE(mysolver)))
! Solve the problem
 starttime:= gettime
 if (cp_maximize(benefit)) then  
  write(gettime-starttime, "sec. ")
  cp_show_sol                      ! Output optimal solution to screen
 end-if
end-model
 |