| /***********************************************************************
   Xpress Optimizer Examples
   =========================
   file Polygon_initialvalue.c
   ``````````````````````````
   Implement the polygon example using tokens and initial values    
   Maximize the area of polygon of N vertices and diameter of 1
   The position of vertices is indicated as (rho,theta) coordinates  
   where rho denotes the distance to the base point   
   (vertex with number N) and theta the angle from the x-axis.        
   The nonlinear expressions are described using formula tokens,    
   and providing initial values to the nonlinear variables.
   (c) 2017 Fair Isaac Corporation       
***********************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "xprs.h"
#include "xslp.h"
#define MAXROW 20
#define MAXCOL 20
#define MAXELT 50
#define MAXTOKEN 200
#define MAXCOEF 20
void XPRS_CC XSLPMessage(XSLPprob my_prob, void *my_object, char *msg,
  int len, int msg_type);
int main(int argc, char *argv[]) {
  XPRSprob xprob = NULL;
  XSLPprob sprob = NULL;
  int nRow, nCol, nSide, nElement, nToken, nCoef, nRowName, nColName;
  int iRow, Sin, Cos;
  char RowType[MAXROW];
  double RHS[MAXROW], OBJ[MAXCOL], Element[MAXELT], Lower[MAXCOL], Upper[MAXCOL];
  int ColStart[MAXCOL+1], RowIndex[MAXELT];
  int ColIndex[MAXCOEF], FormulaStart[MAXCOEF+1];
  int Type[MAXTOKEN];
  double Value[MAXTOKEN], Factor[MAXCOEF];
  int VarType[MAXCOL];
  double InitialValue[MAXCOL];
  int ReturnValue;
  int i, j;
  char RowNames[500], ColNames[500];
/* Initialisation */
  if (ReturnValue=XPRSinit(NULL)) goto ErrorReturn;
  if (ReturnValue=XSLPinit()) goto ErrorReturn;
  if (ReturnValue=XPRScreateprob(&xprob)) goto ErrorReturn;
  if (ReturnValue=XSLPcreateprob(&sprob,&xprob)) goto ErrorReturn;
/* XSLPsetcbmessage */
  XSLPsetcbmessage(sprob,XSLPMessage,NULL);
  nSide = 5;
  nRowName = 0;
/* Rows */
  nRow = nSide-2 + (nSide-1)*(nSide-2)/2 + 1;
  for (i=0;i<nRow;i++) RHS[i] = 0;
  nRow = 0;
  RowType[nRow++] = 'E'; /* OBJEQ */
  nRowName = nRowName + 1 + sprintf(&RowNames[nRowName],"OBJEQ");
  for (i=1;i<nSide-1;i++) {
	  RowType[nRow++] = 'G'; /* T2T1 .. T4T3 */
	  RHS[i] = 0.001;
	  nRowName = nRowName + 1 + sprintf(&RowNames[nRowName],"T%dT%d",i+1,i);
  }
  for (i=1;i<nSide-1;i++) {
	  for (j=i+1;j<nSide;j++) {
	    RowType[nRow] = 'L';
	    RHS[nRow++] = 1.0;
	    nRowName = nRowName + 1 + sprintf(&RowNames[nRowName],"V%dV%d",i,j);
	  }
  }
  RowType[nRow] = '\0';
/* Columns */
  nColName = 0;
  nCol = (nSide-1)*2 + 2;
  nElement = 0;
  for (i=0;i<nCol;i++) {
	  OBJ[i] = 0;					  /* objective function */
 	  Lower[i] = 0;				  /* lower bound normally zero */
	  Upper[i] = XPRS_PLUSINFINITY; /* upper bound infinity */
   }
/* OBJX */
  nCol = 0;
  ColStart[nCol] = nElement;
  OBJ[nCol] = 1.0;
  Lower[nCol++] = XPRS_MINUSINFINITY; /* free column */
  Element[nElement] = -1.0;
  RowIndex[nElement++] = 0;
  nColName = nColName + 1 + sprintf(&ColNames[nColName],"OBJX");
/* THETA1 - THETA 4 */
  iRow = 0;
  for (i=1;i<nSide;i++) {
	  nColName = nColName + 1 + sprintf(&ColNames[nColName],"THETA%d",i);
	  InitialValue[nCol] = 3.14159 * ((double) (i)) / ( (double) (nSide));
	  VarType[nCol] = 4;
	  ColStart[nCol++] = nElement;
	  if (i < nSide-1) {
	    Element[nElement] = -1;
	    RowIndex[nElement++] = iRow+1;
	  }
	  if (i > 1) {
	    Element[nElement] = 1;
	    RowIndex[nElement++] = iRow;
	  }
	  iRow++;
  }
  Upper[nCol-1] = 3.1415926;
/* Equals column */
  nColName = nColName + 1 + sprintf(&ColNames[nColName],"=");
  ColStart[nCol] = nElement;
  Lower[nCol] = Upper[nCol] = 1.0; /* fixed at 1.0 */
  InitialValue[nCol] = 1;
  VarType[nCol] = 4 | 0x4000;
  nCol++;
/* Remaining columns come later */
  for (i=1;i<nSide;i++) {
 	  Lower[nCol] = 0.01;	  /* lower bound */
	  Upper[nCol] = 1;
	  InitialValue[nCol] = 1;
	  VarType[nCol] = 4;
	  ColStart[nCol++] = nElement;
	  nColName = nColName + 1 + sprintf(&ColNames[nColName],"RHO%d",i);
  }
  ColStart[nCol] = nElement;
  XPRSsetintcontrol(xprob,XPRS_MPSNAMELENGTH,16);
  if (ReturnValue=XPRSloadlp(xprob,"Polygon",nCol,nRow,RowType,RHS,NULL,OBJ,
	ColStart,NULL,RowIndex,Element,Lower,Upper)) goto ErrorReturn;
  if (ReturnValue=XPRSaddnames(xprob,1,RowNames,0,nRow-1)) goto ErrorReturn;
  if (ReturnValue=XPRSaddnames(xprob,2,ColNames,0,nCol-1)) goto ErrorReturn;
/* Find index for SIN and COS */
  if (ReturnValue=XSLPgetindex(sprob,XSLP_INTERNALFUNCNAMES,"SIN",&Sin)) goto ErrorReturn;
  if (ReturnValue=XSLPgetindex(sprob,XSLP_INTERNALFUNCNAMES,"COS",&Cos)) goto ErrorReturn;
/* Build up nonlinear coefficients */
/* Area */
  nToken = 0;
  nCoef = 0;
  RowIndex[nCoef] = 0;
  ColIndex[nCoef] = nSide;
  Factor[nCoef] = 0.5;
  FormulaStart[nCoef++] = nToken;
  for (i=1;i<nSide-1;i++) {
	  Type[nToken] = XSLP_COL;
	  Value[nToken++] = nSide+i+1;
	  Type[nToken] = XSLP_COL;
	  Value[nToken++] = nSide+i;
	  Type[nToken] = XSLP_OP;
	  Value[nToken++] = XSLP_MULTIPLY;
	  Type[nToken] = XSLP_RB;
	  Value[nToken++] = 0;
	  Type[nToken] = XSLP_COL;
	  Value[nToken++] = i+1;
	  Type[nToken] = XSLP_COL;
	  Value[nToken++] = i;
	  Type[nToken] = XSLP_OP;
	  Value[nToken++] = XSLP_MINUS;
	  Type[nToken] = XSLP_IFUN;
	  Value[nToken++] = Sin;
	  Type[nToken] = XSLP_OP;
	  Value[nToken++] = XSLP_MULTIPLY;
	  if (i>1) {
	    Type[nToken] = XSLP_OP;
	    Value[nToken++] = XSLP_PLUS;
	  }
  }
  Type[nToken] = XSLP_EOF;
  Value[nToken++] = 0;
/* Distances */
  for (i=1;i<nSide-1;i++) {
	  for (j=i+1;j<nSide;j++) {
	    RowIndex[nCoef] = iRow++;
	    ColIndex[nCoef] = nSide;
	    Factor[nCoef] = 1.0;
	    FormulaStart[nCoef++] = nToken;
	    Type[nToken] = XSLP_COL;
	    Value[nToken++] = nSide+i;
	    Type[nToken] = XSLP_CON;
	    Value[nToken++] = 2;
	    Type[nToken] = XSLP_OP;
	    Value[nToken++] = XSLP_EXPONENT;
	    Type[nToken] = XSLP_COL;
	    Value[nToken++] = nSide+j;
	    Type[nToken] = XSLP_CON;
	    Value[nToken++] = 2;
	    Type[nToken] = XSLP_OP;
	    Value[nToken++] = XSLP_EXPONENT;
	    Type[nToken] = XSLP_OP;
	    Value[nToken++] = XSLP_PLUS;
	    Type[nToken] = XSLP_CON;
	    Value[nToken++] = 2;
	    Type[nToken] = XSLP_COL;
	    Value[nToken++] = nSide+i;
	    Type[nToken] = XSLP_OP;
	    Value[nToken++] = XSLP_MULTIPLY;
	    Type[nToken] = XSLP_COL;
	    Value[nToken++] = nSide+j;
	    Type[nToken] = XSLP_OP;
	    Value[nToken++] = XSLP_MULTIPLY;
	    Type[nToken] = XSLP_RB;
	    Value[nToken++] = 0;
	    Type[nToken] = XSLP_COL;
	    Value[nToken++] = j;
	    Type[nToken] = XSLP_COL;
	    Value[nToken++] = i;
	    Type[nToken] = XSLP_OP;
	    Value[nToken++] = XSLP_MINUS;
	    Type[nToken] = XSLP_IFUN;
	    Value[nToken++] = Cos;
	    Type[nToken] = XSLP_OP;
	    Value[nToken++] = XSLP_MULTIPLY;
	    Type[nToken] = XSLP_OP;
	    Value[nToken++] = XSLP_MINUS;
	    Type[nToken] = XSLP_EOF;
	    Value[nToken++] = 0;
	  }
  }
  if (ReturnValue=XSLPloadcoefs(sprob,nCoef,RowIndex,ColIndex,Factor,FormulaStart,1,Type,Value))
  	goto ErrorReturn;
  for (i=0;i<nCol;i++) {
	  ColIndex[i] = i;
  }
  if (ReturnValue=XSLPloadvars(sprob,nCol-1,&ColIndex[1],&VarType[1],NULL,NULL,
                               NULL,&InitialValue[1],NULL)) goto ErrorReturn;
  XSLPwriteprob(sprob,"Polygon_initialvalue","");
  if (ReturnValue=XSLPmaxim(sprob,"")) goto ErrorReturn;
  if (ReturnValue=XSLPwriteslxsol(sprob, "Polygon_initialvalue2", "")) goto ErrorReturn;
  goto NormalReturn;
ErrorReturn:
  printf("\nError %d",ReturnValue);
NormalReturn:
	XSLPdestroyprob(sprob);
	XPRSdestroyprob(xprob);
  XSLPfree();
  XPRSfree();
  return(ReturnValue);
}
void XPRS_CC XSLPMessage(XSLPprob my_prob, void *my_object, char *msg,
  int len, int msg_type) {
  switch (msg_type) {
  case 4: /* error */
  case 3: /* warning */
  case 2: /* dialogue */
  case 1: /* information */
	printf("%s\n",msg);
	break;
  default: /* exiting */
	fflush(stdout);
	break;
  }
} 
 |