#!/bin/env python
#
# Solve an instance of the TSP with Xpress using callbacks
#
# 2016 (C) FICO
#
#
# Retrieve an example from
#
# http://www.math.uwaterloo.ca/tsp/world/countries.html
#
# and load the TSP instance, then solve it using the Xpress Optimizer
# library with the appropriate callback. Once the optimization is over
# (i.e. the time limit is reached or we find an optimal solution) the
# optimal tour is displayed using matplotlib.
#
import networkx as nx
import xpress as xp
import re, math, sys
from matplotlib import pyplot as plt
if sys.version_info >= (3,): # Import with Python 3
import urllib.request as ul
else: # Use Python 2
import urllib as ul
#
# Download instance from TSPLib
#
# Replace with any of the following for a different instance:
#
# ar9152.tsp (9125 nodes)
# bm33708.tsp (33708 nodes)
# ch71009.tsp (71009 nodes)
# dj38.tsp (38 nodes)
# eg7146.tsp (7146 nodes)
# fi10639.tsp (10639 nodes)
# gr9882.tsp (9882 nodes)
# ho14473.tsp (14473 nodes)
# ei8246.tsp (8246 nodes)
# ja9847.tsp (9847 nodes)
# kz9976.tsp (9976 nodes)
# lu980.tsp (980 nodes)
# mo14185.tsp (14185 nodes)
# nu3496.tsp (3496 nodes)
# mu1979.tsp (1979 nodes)
# pm8079.tsp (8079 nodes)
# qa194.tsp (194 nodes)
# rw1621.tsp (1621 nodes)
# sw24978.tsp (24978 nodes)
# tz6117.tsp (6117 nodes)
# uy734.tsp (734 nodes)
# vm22775.tsp (22775 nodes)
# wi29.tsp (29 nodes)
# ym7663.tsp (7663 nodes)
# zi929.tsp (929 nodes)
# ca4663.tsp (4663 nodes)
# it16862.tsp (16862 nodes)
#
filename = 'dj38.tsp'
ul.urlretrieve ('http://www.math.uwaterloo.ca/tsp/world/' + filename, filename)
# Read file consisting of lines of the form "k: x y" where k is the
# point's index while x and y are the coordinates of the point. The
# distances are assumed to be Euclidean.
instance = open (filename, 'r')
coord_section = False
points = {}
G = nx.Graph ()
#
# Coordinates of the points in the graph
#
for line in instance.readlines ():
if re.match ('NODE_COORD_SECTION.*', line):
coord_section = True
continue
elif re.match ('EOF.*', line):
break
if coord_section:
coord = line.split (' ')
index = int (coord [0])
cx = float (coord [1])
cy = float (coord [2])
points [index] = (cx, cy)
G.add_node (index, pos = (cx, cy))
instance.close ()
print ("Downloaded instance, created graph.")
#
# Callback for checking if the solution forms a tour
#
# Returns a tuple (a,b) with
#
# a: True if the solution is to be rejected, False otherwise
# b: real cutoff value
#
def check_tour (prob, G, isheuristic, cutoff):
"""
Use this function to refuse a solution unless it forms a tour
"""
# Obtain solution, then start at node 1 to see if the solutions at
# one form a tour. The vector s is binary as this is a preintsol()
# callback.
s = []
try:
prob.getlpsol (s, None, None, None)
except:
print ("Can't get LP solution at this node, bailing out")
return 1 # bail out
orignode = 1
nextnode = 1
card = 0
while nextnode != orignode or card == 0:
FS = [j for j in V if j != nextnode and s[prob.getIndex (x[nextnode,j])] == 1] # forward star
card += 1
if len (FS) < 1:
return (True, None) # reject solution if we can't close the loop
nextnode = FS [0]
# If there are n arcs in the loop, the solution is feasible
return (card < n, None) # to accept the cutoff, return second element of tuple as None
#
# Callback for adding subtour elimination constraints
#
# Return nonzero if the node is infeasible, 0 otherwise
#
def eliminate_subtour (prob, G):
"""
Function to insert subtour elimination constraints
"""
s = [] # initialize s to an empty list to provide it as an output parameter
try:
prob.getlpsol (s, None, None, None)
except:
print ("Can't get LP solution at this node, bailing out")
return 0 # bail out
# Starting from node 1, gather all connected nodes of a loop in
# set M. if M == V, then the solution is valid if integer,
# otherwise add a subtour elimination constraint
orignode = 1
nextnode = 1
connset = []
while nextnode != orignode or len (connset) == 0:
connset.append (nextnode)
FS = [j for j in V if j != nextnode and s [prob.getIndex (x [nextnode, j])] == 1] # forward star
if len (FS) < 1:
return 0
nextnode = FS [0]
if len (connset) < n:
# Add a subtour elimination using the nodes in connset (or, if
# card (connset) > n/2, its complement)
if len (connset) <= n/2:
columns = [x[i,j] for i in connset for j in connset if i != j]
nArcs = len (connset)
else:
columns = [x[i,j] for i in V for j in V if not i in connset and not j in connset and i != j]
nArcs = n - len (connset)
nTerms = len (columns)
prob.addcuts ([1], ['L'], [nArcs - 1], [0, nTerms], columns, [1] * nTerms)
return 0 # return nonzero for infeasible
#
# Formulate problem, set callback function and solve
#
n = len (points) # number of nodes
V = range (1, n+1) # set of nodes
A = [(i,j) for i in V for j in V if i != j] # set of arcs (i.e. all pairs since it is a complete graph)
x = {(i,j): xp.var (name = 'x_{0}_{1}'.format (i,j), vartype = xp.binary) for (i,j) in A}
conservation_in = [xp.Sum (x[i,j] for j in V if j != i) == 1 for i in V]
conservation_out = [xp.Sum (x[j,i] for j in V if j != i) == 1 for i in V]
p = xp.problem ()
p.addVariable (x)
p.addConstraint (conservation_in, conservation_out)
xind = {(i,j): p.getIndex (x[i,j]) for (i,j) in x.keys ()}
# Objective function: total distance travelled
p.setObjective (xp.Sum (math.sqrt ((points[i][0] - points[j][0])**2 +
(points[i][1] - points[j][1])**2) * x[i,j] for (i,j) in A))
p.controls.maxtime = -200 # negative for "stop even if no solution is found"
p.addcboptnode (eliminate_subtour, G, 1)
p.addcbpreintsol (check_tour, G, 1)
p.solve ()
try:
sol = p.getSolution ()
# Read solution and store it in the graph
for (i,j) in A:
if sol [p.getIndex (x[i,j])] > 0.5:
G.add_edge (i,j)
# Display best tour found
pos = nx.get_node_attributes (G, 'pos')
nx.draw (G, points) # create a graph with the tour
plt.show () # display it interactively
except:
print ('Could not get a solution in the time limit or could not draw solution, bailing out')
|