example_loadlp.py |
#!/bin/env python
import xpress as xp
p = xp.problem ()
# fill in a problem with three variables and four constraints
p.loadproblem ("", # probname
['G','G','E', 'L'], # qrtypes
[-2.4, -3, 4, 5], # rhs
None, # range
[3,4,5], # obj
[0,2,4,8], # mstart
None, # mnel
[0,1,2,3,0,1,2,3], # mrwind
[1,1,1,1,1,1,1,1], # dmatval
[-1,-1,-1], # lb
[3,5,8], # ub
colnames = ['x1','x2','x3'], # column names
rownames = ['row1','row2','row3','constr_04']) # row names
p.write ("loadlp", "lp")
p.solve ()
# Create another variable and add it, then modify the objective
# function. Note that the objective function is replaced by, not
# amended with, the new objective
x = xp.var()
p.addVariable (x)
p.setObjective (x**2 + 2*x + 444)
p.solve()
p.write ("updated", "lp")
|
|
example_loadqp.py |
#!/bin/env python
# example of loadproblem() that adds a quadratic objective
import xpress as xp
p = xp.problem ()
# fill in a problem with three variables and four constraints
p.loadproblem ("", # probname
['G','G','E', 'L'], # qrtypes
[-2.4, -3, 4, 5], # rhs
None, # range
[3,4,5], # obj
[0,2,4,8], # mstart
None, # mnel
[0,1,2,3,0,1,2,3], # mrwind
[1,1,1,1,1,1,1,1], # dmatval
[-1,-1,-1], # lb
[3,5,8], # ub
[0,0,0,1,1,2], # mqobj1
[0,1,2,1,2,2], # mqobj1
[2,1,1,2,1,2]) # dqe
p.write ("loadedq", "lp")
p.solve ()
|
|
example_loadqcqp.py |
#!/bin/env python
# example using loadproblem to create a quadratically constrained
# quadratic problem.
import xpress as xp
p = xp.problem ()
# fill in a problem with three variables and four constraints
p.loadproblem ("", # probname
['G','G','L', 'L'], # qrtypes
[-2.4, -3, 4, 5], # rhs
None, # range
[3,4,5], # obj
[0,2,4,8], # mstart
None, # mnel
[0,1,2,3,0,1,2,3], # mrwind
[1,1,1,1,1,1,1,1], # dmatval
[-1,-1,-1], # lb
[3,5,8], # ub
[0,0,0,1,1,2], # mqobj1
[0,1,2,1,2,2], # mqobj1
[2,1,1,2,1,2], # dqe
[2,3], # qcrows
[2,3], # qcnquads
[1,2,0,0,2], # qcmqcol1
[1,2,0,2,2], # qcmqcol2
[3,4,1,1,1]) # qcdqval
p.write ("loadedqc", "lp")
p.solve ()
|
|
example_loadmiqcqp.py |
#!/bin/env python
# Example: create a MIQCQP using the loadproblem() function
import xpress as xp
p = xp.problem ()
# fill in a problem with three variables and four constraints
p.loadproblem ("", # probname
['G','G','L', 'L'], # qrtypes
[-2.4, -3, 4, 5], # rhs
None, # range
[3,4,5], # obj
[0,2,4,8], # mstart
None, # mnel
[0,1,2,3,0,1,2,3], # mrwind
[1,1,1,1,1,1,1,1], # dmatval
[-1,-1,-1], # lb
[3,5,8], # ub
[0,0,0,1,1,2], # mqobj1
[0,1,2,1,2,2], # mqobj1
[2,1,1,2,1,2], # dqe
[2,3], # qcrows
[2,3], # qcnquads
[1,2,0,0,2], # qcmqcol1
[1,2,0,2,2], # qcmqcol2
[3,4,1,1,1], # qcdqval
['I','B'], # qgtype
[0,1], # mgcols
[0,2], # dlim
colnames = ['y01','y02','y03'], # column names
rownames = ['row01','row02','row03','row04']) # row names
p.write ("loadedqcg", "lp")
p.solve ()
|
|
example_loadmiqcqp_sos.py |
#!/bin/env python
# Example that uses loadproblem() to create a Mixed Integer
# Quadratically Constrained Quadratic Programming problem with two
# Special Ordered Sets
import xpress as xp
p = xp.problem ()
p.loadproblem ("", # probname
['G','G','L', 'L'], # qrtypes
[-2.4, -3, 4, 5], # rhs
None, # range
[3,4,5], # obj
[0,2,4,8], # mstart
None, # mnel
[0,1,2,3,0,1,2,3], # mrwind
[1,1,1,1,1,1,1,1], # dmatval
[-1,-1,-1], # lb
[3,5,8], # ub
[0,0,0,1,1,2], # mqobj1
[0,1,2,1,2,2], # mqobj1
[2,1,1,2,1,2], # dqe
[2,3], # qcrows
[2,3], # qcnquads
[1,2,0,0,2], # qcmqcol1
[1,2,0,2,2], # qcmqcol2
[3,4,1,1,1], # qcdqval
['I','S'], # qgtype
[0,1], # mgcols
[0,2], # dlim
['1','1'], # qstype
[0,2,4], # msstart
[0,1,0,2], # mscols
[1.1,1.2,1.3,1.4]) # dref
p.write ("loadedqcgs", "lp")
p.solve ()
|
|