#!/bin/env python
#
# Use NumPy arrays for creating a 3-dimensional array of variables,
# then use it to create a mode.
#
from __future__ import print_function
import numpy as np
import xpress as xp
S1 = range (2)
S2 = range (3)
S3 = range (4)
m = xp.problem ()
h = np.array ([[[xp.var (vartype = xp.binary) for i in S1] for j in S2] for k in S3])
m.addVariable (h)
m.setObjective (h[0][0][0] * h[0][0][0] +
h[1][0][0] * h[0][0][0] +
h[1][0][0] * h[1][0][0] +
xp.Sum (h[i][j][k] for i in S3 for j in S2 for k in S1))
cons00 = - h[0][0][0] * h[0][0][0] + xp.Sum (i * j * k * h[i][j][k] for i in S3 for j in S2 for k in S1) >= 11
m.addConstraint (cons00)
m.solve ()
# Get the matrix representation of the quadratic part of the single
# constraint
mstart1=[]
mclind1=[]
dqe1=[]
m.getqrowqmatrix (cons00, mstart1, mclind1, dqe1, 29, h[0][0][0], h[3][2][1])
print ("row 0:", mstart1, mclind1, dqe1)
|