Minimum values
y = min{x1, x2} for two continuous variables x1, x2
- Must know lower and upper bounds L1 ≤ x1 ≤ U1  [1.1] [1.1]L2 ≤ x2 ≤ U2  [1.2] [1.2]
- Introduce binary variables d1, d2 to mean di 1 if xi is the minimum value; 0 otherwise 
- MIP formulation: y ≤ x1 [2.1] y ≤ x2 [2.2] y ≥ x1 - (U1 - Lmin)(1 - d1) [3.1] y ≥ x2 - (U2 - Lmin)(1 - d2) [3.2] d1 + d2 = 1 [4] 
- Generalization to y = min{x1, x2, ..., xn} Li ≤ xi ≤ Ui [1.i] y ≤ xi [2.i] y ≥ xi - (Ui - Lmin)(1 - di) [3.i] ∑i di = 1 [4] 
 
