Initializing help system before first use

problem.addtolsets

problem.addtolsets


Purpose
Add sets of standard tolerance values to an SLP problem
Synopsis
problem.addtolsets (tol)
Argument
slptol 
Array of 9h elements containing the 9 tolerance values for each set in order.
Example
The following example creates two tolerance sets: the first has values of 0.005 for all tolerances; the second has values of 0.001 for relative tolerances (numbers 2,4,6,8), values of 0.01 for absolute tolerances (numbers 1,3,5,7) and zero for the closure tolerance (number 0).
tol = 9*[0.005]+[0]+[0.01,0.001]*4
p.addtolsets (tol)
Further information
A tolerance set is an array of 9 values containing the following tolerances:

Entry / Bit Tolerance XSLP constant XSLP bit constant
0 Closure tolerance (TC) xslp_TOLSET_TC xslp_TOLSETBIT_TC
1 Absolute delta tolerance (TA) xslp_TOLSET_TA xslp_TOLSETBIT_TA
2 Relative delta tolerance (RA) xslp_TOLSET_RA xslp_TOLSETBIT_RA
3 Absolute coefficient tolerance (TM) xslp_TOLSET_TM xslp_TOLSETBIT_TM
4 Relative coefficient tolerance (RM) xslp_TOLSET_RM xslp_TOLSETBIT_RM
5 Absolute impact tolerance (TI) xslp_TOLSET_TI xslp_TOLSETBIT_TI
6 Relative impact tolerance (RI) xslp_TOLSET_RI xslp_TOLSETBIT_RI
7 Absolute slack tolerance (TS) xslp_TOLSET_TS xslp_TOLSETBIT_TS
8 Relative slack tolerance (RS) xslp_TOLSET_RS xslp_TOLSETBIT_RS

The xslp_TOLSET constants can be used to access the corresponding entry in the value arrays, while the xslp_TOLSETBIT constants are used to set or retrieve which tolerance values are used for a given SLP variable.

Once created, a tolerance set can be used to set the tolerances for any SLP variable.

If a tolerance value is zero, then the default tolerance will be used instead. To force the use of a zero tolerance, use the problem.chgtolset function and set the Status variable appropriately.

See the section "Convergence criteria" of the SLP Reference Manual for a fuller description of tolerances and their uses.

The problem.addtolsets functions load additional items into the SLP problem. The corresponding problem.loadtolsets functions delete any existing items first.


Related topics