import xpress as xp
import numpy as np
import math
# random network generation
n = 3 + math.ceil (30 * np.random.random()) # number of nodes
thres = 0.4 # density of network
thresdem = 0.8 # density of demand mesh
# generate random forward stars for each node
fwstars={}
for i in range(n):
fwstar = []
for j in range(n):
if j != i:
if np.random.random() < thres:
fwstar.append(j)
fwstars[i] = fwstar
# backward stars are generated based on the forward stars
bwstars={i:[] for i in range(n)}
for j in fwstars.keys():
for i in fwstars[j]:
bwstars[i].append(j)
# Create arc array
arcs = []
for i in range(n):
for j in fwstars[i]:
arcs.append ((i,j))
# Create random demand between node pairs
dem=[]
for i in range(n):
for j in range (n):
if i != j and np.random.random() < thresdem:
dem.append ((i,j,math.ceil(200*np.random.random())))
# U is the unit capacity of each edge
U = 1000
c = {(i,j): math.ceil (10 * np.random.random()) for (i,j) in arcs} # edge cost
# flow variables
f = {(i,j,d): xp.var(name = 'f_{0}_{1}_{2}_{3}'.format (i,j,dem[d][0],dem[d][1])) for (i,j) in arcs for d in range (len (dem))}
# capacity variables
x = {(i,j): xp.var(vartype = xp.integer, name = 'cap_{0}_{1}'.format(i,j)) for (i,j) in arcs}
p = xp.problem()
p.addVariable(f,x)
def demand (i,d):
if dem[d][0] == i: # source
return 1
elif dem[d][1] == i: # destination
return -1
else:
return 0
# Flow conservation constraints: total flow balance at node i for each demand d must be 0 if
# i is an intermediate node, 1 if i is the source of demand d, and -1 if i is the destination.
flow = {(i,d):
xp.constraint (constraint =
xp.Sum (f[i,j,d] for j in range(n) if (i,j) in arcs) -
xp.Sum (f[j,i,d] for j in range(n) if (j,i) in arcs) == demand(i,d),
name = 'cons_{0}_{1}_{2}'.format(i,dem[d][0],dem[d][1]))
for d in range (len(dem)) for i in range(n)}
# Capacity constraints: weighted sum of flow variables must be contained in the total capacity installed on the arc (i,j)
capacity = {(i,j):
xp.constraint (constraint = xp.Sum (dem[d][2] * f[i,j,d] for d in range (len (dem))) <= U * x[i,j],
name = 'capacity_{0}_{1}'.format(i,j))
for (i,j) in arcs}
p.addConstraint (flow, capacity)
p.setObjective (xp.Sum (c[i,j] * x[i,j] for (i,j) in arcs))
p.controls.maxtime=10
#p.controls.maxnode=1
p.solve()
|