Initializing help system before first use

Els - An economic lot-sizing problem solved by cut-and-branch and branch-and-cut heuristics


Type: Lot-sizing
Rating: 5 (difficult)
Description: The version 'xbels' of this example shows how to implement cut-and-branch (= cut generation at the root node of the MIP search) and 'xbelsc' implements a branch-and-cut (= cut generation at the MIP search tree nodes) algorithm using the cut manager.
File(s): xbels.cxx, xbelsc.cxx


xbels.cxx
/********************************************************
  Xpress-BCL C++ Example Problems
  ===============================

  file xbels.cxx
  ``````````````
  Economic lot sizing, ELS, problem, solved by adding
  (l,S)-inequalities) in several rounds looping over 
  the root node.
  
  ELS considers production planning over a horizon
  of T periods. In period t, t=1,...,T, there is a
  given demand DEMAND[t] that must be satisfied by
  production prod[t] in period t and by inventory
  carried over from previous periods. There is a
  set-up up cost SETUPCOST[t] associated with
  production in period t. The unit production cost
  in period t is PRODCOST[t]. There is no inventory
  or stock-holding cost.

  (c) 2008 Fair Isaac Corporation
      author: S.Heipcke, 2001, rev. Mar. 2011
********************************************************/

#include <iostream>
#include "xprb_cpp.h"
#include "xprs.h"

using namespace std;
using namespace ::dashoptimization;

#define EPS    1e-6

#define T 6                             /* Number of time periods */

/****DATA****/
int DEMAND[]    = { 1, 3, 5, 3, 4, 2};  /* Demand per period */
int SETUPCOST[] = {17,16,11, 6, 9, 6};  /* Setup cost per period */
int PRODCOST[]  = { 5, 3, 2, 1, 3, 1};  /* Production cost per period */
int D[T][T];                            /* Total demand in periods t1 - t2 */

XPRBvar prod[T];                        /* Production in period t */
XPRBvar setup[T];                       /* Setup in period t */

XPRBprob p("Els");                      /* Initialize a new problem in BCL */

/***********************************************************************/

void modEls()
{
 int s,t,k;
 XPRBexpr cobj,le; 
  
 for(s=0;s<T;s++)
  for(t=0;t<T;t++)
   for(k=s;k<=t;k++)
    D[s][t] += DEMAND[k];

/****VARIABLES****/
 for(t=0;t<T;t++)
 {
  prod[t]=p.newVar(XPRBnewname("prod%d",t+1));
  setup[t]=p.newVar(XPRBnewname("setup%d",t+1), XPRB_BV);   
 }

/****OBJECTIVE****/
 for(t=0;t<T;t++)                       /* Minimize total cost */
  cobj += SETUPCOST[t]*setup[t] + PRODCOST[t]*prod[t];
 p.setObj(cobj);

/****CONSTRAINTS****/
         /* Production in period t must not exceed the total demand for the
            remaining periods; if there is production during t then there
            is a setup in t */
 for(t=0;t<T;t++)
  p.newCtr("Production", prod[t] <= D[t][T-1]*setup[t]); 

         /* Production in periods 0 to t must satisfy the total demand
            during this period of time */
 for(t=0;t<T;t++)
 {
  le=0;
  for(s=0;s<=t;s++) le += prod[s];
  p.newCtr("Demand", le >= D[0][t]);
 }

}

/**************************************************************************/
/*  Cut generation loop at the top node:                                  */
/*    solve the LP and save the basis                                     */
/*    get the solution values                                             */
/*    identify and set up violated constraints                            */
/*    load the modified problem and load the saved basis                  */
/**************************************************************************/
void solveEls()
{
 double objval;               /* Objective value */
 int t,l;
 int starttime;
 int ncut, npass, npcut;      /* Counters for cuts and passes */
 double solprod[T], solsetup[T];   /* Solution values for var.s prod & setup */
 double ds;
 XPRBbasis basis;
 XPRBexpr le;

 starttime=XPRB::getTime();
 XPRSsetintcontrol(p.getXPRSprob(), XPRS_CUTSTRATEGY, 0); 
                              /* Disable automatic cuts - we use our own */
 XPRSsetintcontrol(p.getXPRSprob(), XPRS_PRESOLVE, 0);
 XPRSsetintcontrol(p.getXPRSprob(), XPRS_MIPPRESOLVE, 0);
 XPRSsetintcontrol(p.getXPRSprob(), XPRS_PREPROBING, 0);
                              /* Switch presolve off */
 ncut = npass = 0;

 do
 {
  npass++;
  npcut = 0;
  p.lpOptimize("p");          /* Solve the LP */
  basis = p.saveBasis();      /* Save the current basis */
  objval = p.getObjVal();     /* Get the objective value */

      /* Get the solution values: */
  for(t=0;t<T;t++)
  {
   solprod[t]=prod[t].getSol();
   solsetup[t]=setup[t].getSol();
  }
  
      /* Search for violated constraints: */
  for(l=0;l<T;l++)
  {
   for (ds=0.0, t=0; t<=l; t++)
   {
    if(solprod[t] < D[t][l]*solsetup[t] + EPS)  ds += solprod[t];
    else  ds += D[t][l]*solsetup[t];
   }

      /* Add the violated inequality: the minimum of the actual production
         prod[t] and the maximum potential production D[t][l]*setup[t] 
         in periods 0 to l must at least equal the total demand in periods 
         0 to l.
         sum(t=1:l) min(prod[t], D[t][l]*setup[t]) >= D[0][l]
       */
   if(ds < D[0][l] - EPS) 
   {
    le=0;
    for(t=0;t<=l;t++) 
    {
     if (solprod[t] < D[t][l]*solsetup[t] + EPS)
      le += prod[t];
     else
      le += D[t][l]*setup[t];
    }
    p.newCtr(XPRBnewname("cut%d",ncut+1), le >= D[0][l]);
    ncut++; 
    npcut++;
   }
  }
   
  cout << "Pass " << npass << " (" << (XPRB::getTime()-starttime)/1000.0;
  cout << " sec), objective value " << objval << ", cuts added: " << npcut;
  cout << " (total " << ncut << ")" << endl;

  if(npcut==0) 
   cout << "Optimal integer solution found:" << endl;
  else
  { 
   p.loadMat();                 /* Reload the problem */
   p.loadBasis(basis);          /* Load the saved basis */
   basis.reset();               /* No need to keep the basis any longer */
  }
 } while(npcut>0);

      /* Print out the solution: */
 for(t=0;t<T;t++)
 {
  cout << "Period " << t+1 << ": prod " << prod[t].getSol() << " (demand: ";
  cout << DEMAND[t] << ", cost: " << PRODCOST[t] << "), setup ";
  cout << setup[t].getSol() << " (cost: " << SETUPCOST[t] << endl; 
 } 
}

/***********************************************************************/

int main(int argc, char **argv)
{
 modEls();                      /* Model the problem */
 solveEls();                    /* Solve the problem */
  
 return 0;
} 

xbelsc.cxx
/********************************************************
  Xpress-BCL C++ Example Problems
  ===============================

  file xbelsc.cxx 
  ```````````````
  Economic lot sizing, ELS, problem, solved by adding
  (l,S)-inequalities) in a branch-and-cut heuristic 
  (using the cut manager).
  
  ELS considers production planning over a horizon
  of T periods. In period t, t=1,...,T, there is a
  given demand DEMAND[t] that must be satisfied by
  production prod[t] in period t and by inventory
  carried over from previous periods. There is a
  set-up up cost SETUPCOST[t] associated with
  production in period t. The unit production cost
  in period t is PRODCOST[t]. There is no inventory
  or stock-holding cost.

  (c) 2008 Fair Isaac Corporation
      author: S.Heipcke, 2005, rev. Mar. 2011
********************************************************/

#include <iostream>
#include "xprb_cpp.h"
#include "xprs.h"

using namespace std;
using namespace ::dashoptimization;

#define T 6                             /* Number of time periods */

/****DATA****/
int DEMAND[]    = { 1, 3, 5, 3, 4, 2};  /* Demand per period */
int SETUPCOST[] = {17,16,11, 6, 9, 6};  /* Setup cost per period */
int PRODCOST[]  = { 5, 3, 2, 1, 3, 1};  /* Production cost per period */
int D[T][T];                            /* Total demand in periods t1 - t2 */

XPRBvar prod[T];                        /* Production in period t */
XPRBvar setup[T];                       /* Setup in period t */

struct myobj
{
 XPRBprob *prob;
 double tol;
};

XPRBprob p("Els");                      /* Initialize a new problem in BCL */

/***********************************************************************/

void modEls()
{
 int s,t,k;
 XPRBexpr cobj,le; 
 
 for(s=0;s<T;s++)
  for(t=0;t<T;t++)
   for(k=s;k<=t;k++)
    D[s][t] += DEMAND[k];

/****VARIABLES****/
 for(t=0;t<T;t++)
 {
  prod[t]=p.newVar(XPRBnewname("prod%d",t+1));
  setup[t]=p.newVar(XPRBnewname("setup%d",t+1), XPRB_BV);   
 }

/****OBJECTIVE****/
 for(t=0;t<T;t++)                       /* Minimize total cost */
  cobj += SETUPCOST[t]*setup[t] + PRODCOST[t]*prod[t];
 p.setObj(cobj);

/****CONSTRAINTS****/
         /* Production in period t must not exceed the total demand for the
            remaining periods; if there is production during t then there
            is a setup in t */
 for(t=0;t<T;t++)
  p.newCtr("Production", prod[t] <= D[t][T-1]*setup[t]); 

         /* Production in periods 0 to t must satisfy the total demand
            during this period of time */
 for(t=0;t<T;t++)
 {
  le=0;
  for(s=0;s<=t;s++) le += prod[s];
  p.newCtr("Demand", le >= D[0][t]);
 }

}

/**************************************************************************/
/*  Cut generation loop at the tree node:                                 */
/*    get the solution values                                             */
/*    identify and set up violated constraints                            */
/*    add cuts to the matrix                                              */
/**************************************************************************/
int XPRS_CC cbNode(XPRSprob oprob, void *mobj)
{
 struct myobj *mo;
 double objval;                  /* Objective value */
 int t,l;
 int ncut;                       /* Counters for cuts */
 double solprod[T], solsetup[T]; /* Solution values for var.s prod & setup */
 double ds;
 int depth,node;
 XPRBcut cut[T];
 XPRBexpr le; 

 mo=(struct myobj *)mobj;
 mo->prob->beginCB(oprob);

 ncut = 0;
 XPRSgetintattrib(oprob,XPRS_NODEDEPTH, &depth);
 XPRSgetintattrib(oprob,XPRS_NODES, &node);

      /* Get the solution values */
 mo->prob->sync(XPRB_XPRS_SOL);
 for(t=0;t<T;t++)
 {
   solprod[t]=prod[t].getSol();
   solsetup[t]=setup[t].getSol();
 }

      /* Search for violated constraints: */
 for(l=0;l<T;l++)
 {
   for (ds=0.0, t=0; t<=l; t++)
   {
    if(solprod[t] < D[t][l]*solsetup[t] + mo->tol)  ds += solprod[t];
    else  ds += D[t][l]*solsetup[t];
   }

      /* Add the violated inequality: the minimum of the actual production
         prod[t] and the maximum potential production D[t][l]*setup[t] 
         in periods 0 to l must at least equal the total demand in periods 
         0 to l.
         sum(t=1:l) min(prod[t], D[t][l]*setup[t]) >= D[0][l]
       */
   if(ds < D[0][l] - mo->tol) 
   {
    le=0;
    for(t=0;t<=l;t++) 
    {
     if (solprod[t] < D[t][l]*solsetup[t] + mo->tol)
      le += prod[t];
     else
      le += D[t][l]*setup[t];
    }
    cut[ncut] = mo->prob->newCut(le >= D[0][l]);
    ncut++; 
   }
 }
   
/* Add cuts to the problem */
 if(ncut>0)
 { 
   mo->prob->addCuts(cut, ncut);
   XPRSgetdblattrib(oprob, XPRS_LPOBJVAL, &objval);
   cout << "Cuts added : " << ncut << " (depth " << depth << ", node ";
   cout << node << "), obj. " << objval << endl; 
 }
 mo->prob->endCB();
  
 return 0;
}

/***********************************************************************/
void treeCutGen()
{
 XPRSprob oprob;
 struct myobj mo;
 double feastol;
 int starttime,t;

 starttime=XPRB::getTime();
 
 oprob = p.getXPRSprob();                         /* Get Optimizer problem */

 XPRSsetintcontrol(oprob, XPRS_LPLOG, 0);
 XPRSsetintcontrol(oprob, XPRS_MIPLOG, 3);

 XPRSsetintcontrol(oprob, XPRS_CUTSTRATEGY, 0);   /* Disable automatic cuts */
 XPRSsetintcontrol(oprob, XPRS_PRESOLVE, 0);      /* Switch presolve off */
 XPRSsetintcontrol(oprob, XPRS_EXTRAROWS, 5000);  /* Reserve extra rows */

 XPRSgetdblcontrol(oprob, XPRS_FEASTOL, &feastol);  /* Get zero tolerance */
 feastol*= 10;

 mo.prob=&p;
 mo.tol=feastol;
 p.setCutMode(1);
 XPRSsetcbcutmgr(oprob, cbNode, &mo);

 p.mipOptimize("");                               /* Solve the MIP */
 cout << "(" << (XPRB::getTime()-starttime)/1000.0 << " sec) Global status ";
 cout << p.getMIPStat() << ", best solution: " << p.getObjVal() << endl;  
 for(t=0;t<T;t++)
 {
  cout << "Period " << t+1 << ": prod " << prod[t].getSol() << " (demand: ";
  cout << DEMAND[t] << ", cost: " << PRODCOST[t] << "), setup ";
  cout << setup[t].getSol() << " (cost: " << SETUPCOST[t] << ")" << endl;
 }
}

/***********************************************************************/

int main(int argc, char **argv)
{
 modEls();                    /* Model the problem */
 treeCutGen();                /* Solve the problem */
  
 return 0;
} 

© 2001-2019 Fair Isaac Corporation. All rights reserved. This documentation is the property of Fair Isaac Corporation (“FICO”). Receipt or possession of this documentation does not convey rights to disclose, reproduce, make derivative works, use, or allow others to use it except solely for internal evaluation purposes to determine whether to purchase a license to the software described in this documentation, or as otherwise set forth in a written software license agreement between you and FICO (or a FICO affiliate). Use of this documentation and the software described in it must conform strictly to the foregoing permitted uses, and no other use is permitted.