Initializing help system before first use

Portfolio - Quadratic Programming with discrete variables


Type: Portfolio optimization
Rating: 2 (easy-medium)
Description: Quadratic Mixed Integer Programming example demonstrating Quadratic Programming with discrete variables.
File(s): xbportf.cxx
Data file(s): pfqcost.dat, pfubds.dat, pflcost.dat


xbportf.cxx
/********************************************************
  Xpress-BCL C++ Example Problems
  ===============================

  file xbportf.cxx
  ````````````````
  Quadratic portfolio model.

  (c) 2008 Fair Isaac Corporation
      author: S.Heipcke, Jan. 2000, rev. Mar. 2011
********************************************************/

/* In this model, a choice has to be made which values are taken   *
 * into a portfolio in order to minimize the total cost. The costs *
 * for some values are interrelated, introducing a quadratic part  *
 * to the objective function. Upper bounds are given on the total  *
 * number of values and the share of each value that may be taken. */

#include <iostream>
#include <cstring>
#include <cstdio>
#include "xprb_cpp.h"
#include "xprs.h"

using namespace std;
using namespace ::dashoptimization;

#define NVal 30                       /* Total number of values */
#define LIMIT 20                      /* Maximum number to be chosen */

#define QFILE XPRBDATAPATH "/portf/pfqcost.dat" /* Quadratic cost coeff.s */
#define BFILE XPRBDATAPATH "/portf/pfubds.dat"  /* Upper bds. on percentages */
#define CFILE XPRBDATAPATH "/portf/pflcost.dat" /* Linear cost coefficients */

/**** DATA ****/
double Cost[NVal];                    /* Coeff. of lin. part of the obj. */
double QCost[NVal][NVal];             /* Coeff. of quad. part of the obj. */
double UBnd[NVal];                    /* Upper bound values */

XPRBprob p("Portfolio");              /* Initialize a new problem in BCL */

/***********************************************************************/

void modFolio()
{
 XPRBexpr le, qobj;
 XPRBvar x[NVal];                 /* Amount of a value taken into
                                     the portfolio */
 XPRBvar y[NVal];                 /* 1 if value i is chosen, else 0 */
 int i,j;

/**** VARIABLES ****/
 for(i=0;i<NVal;i++)
 {
  x[i] = p.newVar(XPRBnewname("x_%d",i+1), XPRB_PL, 0, UBnd[i]);
  y[i] = p.newVar(XPRBnewname("y_%d",i+1), XPRB_BV);
 }

/****OBJECTIVE****/
 for(i=0;i<NVal;i++)              /* Define objective: total cost */
 {
  qobj += Cost[i]*x[i];
  qobj += QCost[i][i]*sqr(x[i]);
  for(j=i+1;j<NVal;j++)
   qobj += QCost[i][j]*x[i]*x[j];
 }
 p.setObj(qobj);                  /* Set objective function */ 
 
/**** CONSTRAINTS ****/
                   /* Amounts of values chosen must add up to 100% */
 for(i=0;i<NVal;i++) le += x[i]; 
 p.newCtr("C1", le == 100);

 for(i=0;i<NVal;i++)              /* Upper limits */
  p.newCtr("UL", x[i] <= UBnd[i]*y[i]);
 
 le = 0;                          /* Limit on total number of values */
 for(i=0;i<NVal;i++) le += y[i];
 p.newCtr("Card", le <= LIMIT); 
   
/****SOLVING + OUTPUT****/
// p.print();			  /* Print out the problem definition */
 p.exportProb(XPRB_MPS,"Portf");  /* Output the matrix in MPS format */
 p.exportProb(XPRB_LP,"Portf");   /* Output the matrix in LP format */
  
 p.setSense(XPRB_MINIM);      	  /* Choose the sense of the optimization */   
 XPRSsetintcontrol(p.getXPRSprob(),XPRS_CUTSTRATEGY,0);
 p.lpOptimize("");                /* Solve the QP-problem, use 'mipOptimize' to
                                     solve MIQP */

 cout << "Objective function value: " << p.getObjVal() << endl;
 for(i=0;i<NVal;i++)
  cout << x[i].getName() << ": " << x[i].getSol() << ", ";
 cout << endl;
}

/***********************************************************************/

    /**** Read data from files ****/
void readData()
{
 int i,j;
 double value;
 FILE *datafile;
 
        /* Read the quadratic cost data file */
 memset(QCost,0,NVal*NVal*sizeof(double));      /* Initialize Q to 0 */
 datafile=fopen(QFILE,"r");
 while (XPRBreadlinecb(XPRB_FGETS, datafile, 200, "i,i,g", &i, &j, 
        &value) == 3)
  QCost[i-1][j-1]=value; 
 fclose(datafile);

        /* Read the linear cost data file */
 datafile=fopen(CFILE,"r");
 while (XPRBreadlinecb(XPRB_FGETS, datafile, 200, "i,g", &i, &value) == 2)
  Cost[i-1]=value; 
 fclose(datafile);

        /* Read the bounds data file */
 datafile=fopen(BFILE,"r");
 while (XPRBreadlinecb(XPRB_FGETS, datafile, 200, "i,g", &i, &value) == 2)
  UBnd[i-1]=value;  
 fclose(datafile);
}

/***********************************************************************/

int main(int argc, char **argv)
{
 readData();                          /* Data input from file */
 modFolio();                          /* Formulate and solve the problem */
 
 return 0;
} 

© 2001-2019 Fair Isaac Corporation. All rights reserved. This documentation is the property of Fair Isaac Corporation (“FICO”). Receipt or possession of this documentation does not convey rights to disclose, reproduce, make derivative works, use, or allow others to use it except solely for internal evaluation purposes to determine whether to purchase a license to the software described in this documentation, or as otherwise set forth in a written software license agreement between you and FICO (or a FICO affiliate). Use of this documentation and the software described in it must conform strictly to the foregoing permitted uses, and no other use is permitted.