Initializing help system before first use

Multicommodity flow problem


Type: Programming
Rating: 2 (easy-medium)
Description: Create a random directed graph using NumPy's random functions and then model and solve a minimum-cost multicommodity flow problem constructed on that graph.
File(s): example_multicommodity_flow.py


example_multicommodity_flow.py
import xpress as xp
import numpy as np
import math

# random network generation

n = 3 + math.ceil(30 * np.random.random())  # number of nodes

thres = 0.4     # density of network
thresdem = 0.8  # density of demand mesh

# generate random forward stars for each node

fwstars = {}

for i in range(n):
    fwstar = []
    for j in range(n):
        if j != i:
            if np.random.random() < thres:
                fwstar.append(j)
    fwstars[i] = fwstar

# backward stars are generated based on the forward stars

bwstars = {i: [] for i in range(n)}

for j in fwstars.keys():
    for i in fwstars[j]:
        bwstars[i].append(j)

# Create arc array

arcs = []
for i in range(n):
    for j in fwstars[i]:
        arcs.append((i, j))

# Create random demand between node pairs

dem = []

for i in range(n):
    for j in range(n):
        if i != j and np.random.random() < thresdem:
            dem.append((i, j, math.ceil(200*np.random.random())))

# U is the unit capacity of each edge
U = 1000
# edge cost
c = {(i, j): math.ceil(10 * np.random.random()) for (i, j) in arcs}

# flow variables
f = {(i, j, d): xp.var(name='f_{0}_{1}_{2}_{3}'.format(i, j, dem[d][0],
                                                       dem[d][1]))
     for (i, j) in arcs for d in range(len(dem))}

# capacity variables
x = {(i, j): xp.var(vartype=xp.integer, name='cap_{0}_{1}'.format(i, j))
     for (i, j) in arcs}

p = xp.problem()
p.addVariable(f, x)


def demand(i, d):
    if dem[d][0] == i:  # source
        return 1
    elif dem[d][1] == i:  # destination
        return -1
    else:
        return 0


# Flow conservation constraints: total flow balance at node i for each demand d
# must be 0 if i is an intermediate node, 1 if i is the source of demand d, and
# -1 if i is the destination.

flow = {(i, d):
        xp.constraint(constraint=xp.Sum(f[i, j, d]
                                        for j in range(n) if (i, j) in arcs) -
                      xp.Sum(f[j, i, d] for j in range(n) if (j, i) in arcs)
                      == demand(i, d),
                      name='cons_{0}_{1}_{2}'.format(i, dem[d][0], dem[d][1]))
        for d in range(len(dem)) for i in range(n)}

# Capacity constraints: weighted sum of flow variables must be contained in the
# total capacity installed on the arc (i, j)
capacity = {(i, j):
            xp.constraint(constraint=xp.Sum(dem[d][2] * f[i, j, d]
                                            for d in range(len(dem)))
                          <= U * x[i, j],
                          name='capacity_{0}_{1}'.format(i, j))
            for (i, j) in arcs}

p.addConstraint(flow, capacity)

p.setObjective(xp.Sum(c[i, j] * x[i, j] for (i, j) in arcs))

p.solve()

© 2001-2019 Fair Isaac Corporation. All rights reserved. This documentation is the property of Fair Isaac Corporation (“FICO”). Receipt or possession of this documentation does not convey rights to disclose, reproduce, make derivative works, use, or allow others to use it except solely for internal evaluation purposes to determine whether to purchase a license to the software described in this documentation, or as otherwise set forth in a written software license agreement between you and FICO (or a FICO affiliate). Use of this documentation and the software described in it must conform strictly to the foregoing permitted uses, and no other use is permitted.