Initializing help system before first use

Calling the library from C#


Type: Programming
Rating: 3 (intermediate)
Description: Demonstrates how to solve a nonlinear problem in C#
File(s): Polygon.cs

Polygon.cs
using System;
using System.IO;
using Optimizer;
using XSLPdnet;

namespace XSLPExamples
{
  class XSLPExample
  {

    public static void RunExp1()
    {
      /* Example 1 loads a simple problem, and setups the SLP coefficient using a string. */
      XPRS.Init("");
      XSLP sProb = new XSLP();      

      System.Console.WriteLine("####################");
      System.Console.WriteLine("# Polygon example  #");
      System.Console.WriteLine("####################");
      System.Console.WriteLine(sProb.getBanner());
      
      int nRow, nCol, nSide, nElement;
      int iRow;
      char[] RowType;
      double[] RHS, OBJ, Element, Lower, Upper;
      int[] ColStart, RowIndex;
      double Factor;
      int ReturnValue;
      int i, j;      
      string CoefBuffer;
      int BufferPos;
      string[] RowNames, ColNames;

      nSide = 5;

      /* Rows */
      nRow = nSide - 2 + (nSide - 1) * (nSide - 2) / 2 + 1;
      RHS = new double[nRow]; 
      for (i = 0; i < nRow; i++) RHS[i] = 0;

      RowType = new char[nRow+1];
      RowNames = new string[nRow];
      nRow = 0;
      RowType[nRow] = 'E'; /* OBJEQ */
      RowNames[nRow] = "OBJEQ";
      nRow++;      
      for (i = 1; i < nSide - 1; i++)
      {
        RowType[nRow] = 'G'; /* T2T1 .. T4T3 */
        RowNames[nRow] = "T" + (i + 1) + "T" + i; 
        nRow++;
        RHS[i] = 0.001;
      }

      for (i = 1; i < nSide - 1; i++)
      {
        for (j = i + 1; j < nSide; j++)
        {
          RowType[nRow] = 'L';
          RHS[nRow] = 1.0;
          RowNames[nRow] = "V" + i + "V" + j;          
          nRow++;          
        }
      }
      RowType[nRow] = '\0';

      /* Columns */      
      nCol = (nSide - 1) * 2 + 2;
      nElement = 0;
      OBJ = new double[nCol];
      Lower = new double[nCol];
      Upper = new double[nCol];
      for (i = 0; i < nCol; i++)
      {
        OBJ[i] = 0;           /* objective function */
        Lower[i] = 0;         /* lower bound normally zero */
        Upper[i] = XPRS.PLUSINFINITY; /* upper bound infinity */
      }

      ColStart = new int[nRow + 1];
      Element = new double[10*nCol];
      RowIndex = new int[10*nCol];
      ColNames = new string[nCol];

      /* OBJX */
      nCol = 0;      
      ColStart[nCol] = nElement;
      OBJ[nCol] = 1.0;
      ColNames[nCol] = "OBJX";
      Lower[nCol++] = XPRS.MINUSINFINITY; /* free column */
      Element[nElement] = -1.0;
      RowIndex[nElement++] = 0;      

      /* THETA1 - THETA 4 */
      iRow = 0;
      for (i = 1; i < nSide; i++)
      {        
        ColNames[nCol]  = "THETA" + i;
        ColStart[nCol++] = nElement;
        if (i < nSide - 1)
        {
          Element[nElement] = -1;
          RowIndex[nElement++] = iRow + 1;
        }
        if (i > 1)
        {
          Element[nElement] = 1;
          RowIndex[nElement++] = iRow;
        }
        iRow++;
      }

      Upper[nCol - 1] = 3.1415926;

      /* Equals column */      
      ColNames[nCol] = "=";
      ColStart[nCol] = nElement;
      Lower[nCol] = Upper[nCol] = 1.0; /* fixed at 1.0 */
      nCol++;

      /* Remaining columns come later */
      for (i = 1; i < nSide; i++)
      {
        Lower[nCol] = 0.01;   /* lower bound */
        Upper[nCol] = 1;
        ColNames[nCol] = "RHO" + i;
        ColStart[nCol++] = nElement;        
      }
      ColStart[nCol] = nElement;

      sProb.XPRS.LoadLP("Polygon", nCol, nRow, RowType, RHS, null, OBJ, ColStart, null, RowIndex, Element, Lower, Upper);

      sProb.XPRS.AddNames(1, RowNames, 0, nRow - 1);
      sProb.XPRS.AddNames(2, ColNames, 0, nCol - 1);      

      /* Build up nonlinear coefficients */      

      /* Area */      
      double[] coeffFactor = { 0.5 };

      BufferPos = 0;
      CoefBuffer = "";
      for (i = 1; i < nSide - 1; i++)
      {

        if (i > 1)
        {
          CoefBuffer += " + "; 
        }
        CoefBuffer +=  "RHO" + (i+1) + " * RHO" +i +" * SIN ( THETA" + (i+1) + " - THETA" + i + " )";
      }
      sProb.chgCCoef(0, nSide, coeffFactor, CoefBuffer);

      /* Distances */
      coeffFactor[0] = 1.0;      
      for (i = 1; i < nSide - 1; i++)
      {
        for (j = i + 1; j < nSide; j++)
        {
          CoefBuffer = "RHO" + j + " ^ 2 + RHO" + i + " ^ 2 - 2 * RHO" + j + " * RHO" + i + " * COS ( THETA" + j + " - THETA" + i + " )";
          sProb.chgCCoef( iRow, nSide, coeffFactor, CoefBuffer);
          iRow++;
        }
      }

      sProb.writeProb("Polygon_sharp.lp", "l");

      sProb.maxim("");
      sProb.WriteSlxSol("Polygon_sharp", "");

      /* Cleanup */
      sProb.destroyProb();
      XPRS.Free();
    }

    public static void Main(string[] args)
    {
      RunExp1();
      Console.ReadLine();
    }
  }
}


© 2001-2019 Fair Isaac Corporation. All rights reserved. This documentation is the property of Fair Isaac Corporation (“FICO”). Receipt or possession of this documentation does not convey rights to disclose, reproduce, make derivative works, use, or allow others to use it except solely for internal evaluation purposes to determine whether to purchase a license to the software described in this documentation, or as otherwise set forth in a written software license agreement between you and FICO (or a FICO affiliate). Use of this documentation and the software described in it must conform strictly to the foregoing permitted uses, and no other use is permitted.