Apply a primal heuristic to a knapsack problem
|
|
Type: | Knapsack problem |
Rating: | 3 (intermediate) |
Description: | The program demonstrates the use of the global log callback. We take the knapsack problem stored in burglar.mat and instigate a global search. At each node, so long as the current solution is both LP optimal and integer infeasible, we truncate the solution values to create a feasible integer solution. We then update the cutoff, if the new objective value has improved it, and continue the search. |
File(s): | Knapsack.cs |
Data file(s): | burglar.mat |
|
Knapsack.cs |
using System; using Optimizer; namespace XPRSExamples { class Knapsack { public static void Main(string[] args) { Knapsack example = new Knapsack(); example.Run(); } private void Run() { string sLogFile = "knapsack.log"; string sProblem = @"..\..\..\Data\burglar"; try { // initialise optimizer XPRS.Init(""); Console.WriteLine(XPRS.GetBanner()); prob = new XPRSprob(); // define log file prob.SetLogFile(sLogFile); // Tell Optimizer to call OptimizerMsg whenever a message is output prob.MessageCallbacks += new MessageCallback (this.OptimizerMsg); // Get and display the Optimizer version number Console.WriteLine(prob.Version); //Turn off presolve and disallow cuts - to slow solution and allow the // effect of the heuristic to be seen prob.Presolve = 0; prob.CutStrategy = 0; // Read the problem file prob.MPSFormat = -1; prob.ReadProb(sProblem,""); // Prepare to apply the heuristic // Get the number of columns gnCol = prob.Cols; // Allocate memory to the coefficient and solution arrays gpObjCoef = new double[gnCol]; x = new double[gnCol]; // Get the objective function coefficients prob.GetObj(gpObjCoef, 0,gnCol-1); // Get integer feasibility tolerance gdIntTol = prob.MIPTol; // Tell Optimizer to print global information to the log file at each node prob.MIPLog = 3; // Tell Optimizer to call truncsol at each node and apply the heuristic prob.GloballogCallbacks += new GloballogCallback(this.TruncSol); // Perform the global search - in the course of which the heuristic will // be applied Console.WriteLine("Applying a primal heuristic to problem {0}",sProblem); prob.MipOptimize(); } catch (XPRSException e) { Console.WriteLine(e.ToString()); throw e; } finally { prob.Destroy(); XPRS.Free(); } } public void OptimizerMsg (XPRSprob prob, object data, string message, int len, int msglvl) { Console.WriteLine ("{0}" + message, data); } public int TruncSol(XPRSprob prob, object data) { int nNodeNum; // Number of nodes solved double dObjVal; // Objective value double dCutoff; // Cutoff value LPStatus nLPStatus; // LP solution status int nIntInf; // Number of integer infeasibilities int i; // Loop counter double dHeurObj; // Objective value after the solution values have been truncated string [] sLPStatus = { "Optimal","Infeasible","Objective worse than cutoff", "Unfinished","Unbounded","Cutoff in dual" }; // Get the current node number nNodeNum = prob.Nodes; // Get objective value at the current node dObjVal = prob.LPObjVal; // Get the current cutoff value dCutoff = prob.MIPAbsCutoff; // Get LP solution status and the number of integer infeasibilities nLPStatus = prob.LPStatus; nIntInf = prob.MIPInfeas; // Apply heuristic if nodal solution is LP optimal and integer infeasible if (nLPStatus == LPStatus.Optimal && nIntInf>0) { // Get LP solution prob.GetSol(x,null,null,null); // Truncate each solution value - making allowance for the integer // tolerance - and calculate the new "heuristic" objective value for (dHeurObj=0, i=0; i<gnCol; i++) { dHeurObj += gpObjCoef[i] * (int) (x[i] + gdIntTol); } Console.WriteLine(" Node {0}: Objective Value: ORIGINAL {1}; HEURISTIC {2}\n\n", nNodeNum,dObjVal,dHeurObj); // If the "heuristic" objective value is better, update the cutoff - // we assume that all the objective coefficents are integers if( dHeurObj > dCutoff) { prob.MIPAbsCutoff = dHeurObj + 0.9999; Console.WriteLine(" ** Cutoff updated to {0} **\n\n",dHeurObj+1.0); } } /* If the nodal solution is not LP optimal do not apply the heuristic */ else if (nLPStatus != LPStatus.Optimal) { Console.WriteLine(" Node {0}: LP solution not optimal, not applying heuristic\n",nNodeNum); Console.WriteLine(" ({0})\n\n",sLPStatus[(int)nLPStatus-1]); } /* If the nodal solution is integer feasible print the objective value */ else if (nIntInf == 0) { Console.WriteLine(" Node {0}: Integer solution found: Objective Value {1}\n\n", nNodeNum,dObjVal); } return 0; } private XPRSprob prob; // converted from the C globals private double[] x; // Nodal LP solution values private double[] gpObjCoef; // Objective function coefficients private double gdIntTol; // Integer feasibility tolerance private int gnCol; // Number of columns } } |
© 2001-2019 Fair Isaac Corporation. All rights reserved. This documentation is the property of Fair Isaac Corporation (“FICO”). Receipt or possession of this documentation does not convey rights to disclose, reproduce, make derivative works, use, or allow others to use it except solely for internal evaluation purposes to determine whether to purchase a license to the software described in this documentation, or as otherwise set forth in a written software license agreement between you and FICO (or a FICO affiliate). Use of this documentation and the software described in it must conform strictly to the foregoing permitted uses, and no other use is permitted.