Fantasy OR: Sangraal (CP and MIP models)
|
|
Type: | Scheduling |
Rating: | 3 (intermediate) |
Description: | The Sangraal problem is an example of a mathematical problem embedded in a computer fantasy game. The description of the problem and the mathematical model introduced below draw on a publication by M.Chlond: M.J. Chlond, Fantasy OR, INFORMS Transactions on Education, Vol. 4, No. 3, 2004. http://ite.pubs.informs.org/Vol4No3/Chlond/ When the Sangraal (Holy Grail) is almost won the hero arrives at a castle where he finds 8 imprisoned knights. He is facing the task to bring the largest possible number of knights for the arrival of the Sangraal in twenty minutes' time. The time required for freeing a knight depends on his state of binding. A freed knight then needs a given amount of time to wash and recover himself physically. For every knight, the durations of freeing and preparing are given. The problem of deciding in which order to free the knights is a standard scheduling problem, or to be more precise the problem of sequencing a set of disjunctive tasks. Typical objective functions in scheduling are to minimize the completion time of the last task (the so-called makespan) or the average completion time of all tasks. The objective to maximize the number of knights who are ready by a given time makes the problem slightly more challenging since we need to introduce additional variables for counting the knights who are ready on time.
|
File(s): | sangraal.mos, sangraal_graph.mos, sangraalind.mos, sangraal_ka.mos, sangraal2_ka.mos |
|
sangraal.mos |
(!****************************************************** Mosel Example Problems ====================== file sangraal.mos ````````````````` Sangraal problem. When the Sangraal (Holy Grail) is almost won the hero arrives at a castle where he finds 8 imprisoned knights. He is facing the task to bring the largest possible number of knights for the arrival of the Sangraal in twenty minutes' time. The time required for freeing a knight depends on his state of binding. A freed knight then needs a given amount of time to wash and recover himself physically. Description and original model by M. Chlond: https://doi.org/10.1287/ited.4.3.66 (c) 2008 Fair Isaac Corporation author: S. Heipcke, 2005, rev. June 2011 *******************************************************!) model Sangraal uses "mmxprs", "mmjobs" forward public procedure print_solution declarations KNIGHTS = {"Agravain", "Bors", "Caradoc", "Dagonet", "Ector", "Feirefiz", "Gareth", "Harry"} K = 8 POS = 1..K FREE: array(KNIGHTS) of real ! Time to free each knight PREP: array(KNIGHTS) of real ! Time to prepare each knight x: array(KNIGHTS,POS) of mpvar ! x(k,j)=1 if knight k in position j, ! 0 otherwise ontime: array(POS) of mpvar ! ontime(j)=1 if position j finished within ! 20 minutes, 0 otherwise ready: array(POS) of mpvar ! Finish time for each position SOLFOUND = 2 ! Solution found event pos: array(KNIGHTS) of integer ! Position of knight end-declarations FREE("Agravain"):=1; PREP("Agravain"):=15 FREE("Bors") :=1; PREP("Bors") := 5 FREE("Caradoc") :=2; PREP("Caradoc") :=15 FREE("Dagonet") :=2; PREP("Dagonet") := 5 FREE("Ector") :=3; PREP("Ector") :=10 FREE("Feirefiz"):=4; PREP("Feirefiz"):=15 FREE("Gareth") :=5; PREP("Gareth") :=10 FREE("Harry") :=6; PREP("Harry") := 5 MAXT:= sum(k in KNIGHTS) FREE(k) + max(k in KNIGHTS) PREP(k) MINT:= min(k in KNIGHTS) (PREP(k) + FREE(k)) forall(k in KNIGHTS, j in POS) x(k,j) is_binary forall(j in POS) ontime(j) is_binary ! Maximize number of positions finished within 20 minutes TotalFreed := sum(j in POS) ontime(j) ! Each knight in one position forall(k in KNIGHTS) sum(j in POS) x(k,j) = 1 ! Each position has one knight forall(j in POS) sum(k in KNIGHTS) x(k,j) = 1 ! Compute finish time for each position forall(j in POS) sum(k in KNIGHTS,l in 1..j-1) FREE(k)*x(k,l) + sum(k in KNIGHTS) (FREE(k)+PREP(k))*x(k,j) = ready(j) ! ontime(j) = 1 if knight in position j is freed and prepared within 20 min. forall(j in POS) do ready(j) >= 21-(21-MINT)*ontime(j) ready(j) <= MAXT-(MAXT-20)*ontime(j) end-do ! setparam("XPRS_VERBOSE", true) ! setparam("XPRS_HEURSTRATEGY", 0) ! setparam("XPRS_CUTSTRATEGY", 0) ! setparam("XPRS_PRESOLVE", 0) setcallback(XPRS_CB_INTSOL,"print_solution") maximize(TotalFreed) !******************************************************************** public procedure print_solution obj:=getparam("XPRS_LPOBJVAL") writeln("Number of knights freed on time: ", obj) writeln("Knight Position Ready <=20 min") forall(k in KNIGHTS) do pos(k):=round(getsol(sum(j in POS) j*x(k,j))) writeln(strfmt(k,-12), pos(k), " ", strfmt(getsol(ready(pos(k))),2), " ", if(getsol(ontime(pos(k)))=1,"yes","no")) end-do end-procedure end-model |
sangraal_graph.mos |
(!****************************************************** Mosel Example Problems ====================== file sangraal.mos ````````````````` Sangraal problem. - Graphical representation of solutions - When the Sangraal (Holy Grail) is almost won the hero arrives at a castle where he finds 8 imprisoned knights. He is facing the task to bring the largest possible number of knights for the arrival of the Sangraal in twenty minutes' time. The time required for freeing a knight depends on his state of binding. A freed knight then needs a given amount of time to wash and recover himself physically. Description and original model by M. Chlond: https://doi.org/10.1287/ited.4.3.66 (c) 2008 Fair Isaac Corporation author: S. Heipcke, 2005, rev. Mar. 2019 *******************************************************!) model Sangraal uses "mmxprs", "mmsvg" forward public procedure print_solution declarations KNIGHTS = {"Agravain", "Bors", "Caradoc", "Dagonet", "Ector", "Feirefiz", "Gareth", "Harry"} K = 8 POS = 1..K FREE: array(KNIGHTS) of real ! Time to free each knight PREP: array(KNIGHTS) of real ! Time to prepare each knight x: array(KNIGHTS,POS) of mpvar ! x(k,j)=1 if knight k in position j, ! 0 otherwise ontime: array(POS) of mpvar ! ontime(j)=1 if position j finished within ! 20 minutes, 0 otherwise ready: array(POS) of mpvar ! Finish time for each position pos: array(KNIGHTS) of integer ! Position of knight end-declarations FREE("Agravain"):=1; PREP("Agravain"):=15 FREE("Bors") :=1; PREP("Bors") := 5 FREE("Caradoc") :=2; PREP("Caradoc") :=15 FREE("Dagonet") :=2; PREP("Dagonet") := 5 FREE("Ector") :=3; PREP("Ector") :=10 FREE("Feirefiz"):=4; PREP("Feirefiz"):=15 FREE("Gareth") :=5; PREP("Gareth") :=10 FREE("Harry") :=6; PREP("Harry") := 5 MAXT:= sum(k in KNIGHTS) FREE(k) + max(k in KNIGHTS) PREP(k) MINT:= min(k in KNIGHTS) (PREP(k) + FREE(k)) forall(k in KNIGHTS, j in POS) x(k,j) is_binary forall(j in POS) ontime(j) is_binary ! Maximize number of positions finished within 20 minutes TotalFreed := sum(j in POS) ontime(j) ! Each knight in one position forall(k in KNIGHTS) sum(j in POS) x(k,j) = 1 ! Each position has one knight forall(j in POS) sum(k in KNIGHTS) x(k,j) = 1 ! Compute finish time for each position forall(j in POS) sum(k in KNIGHTS,l in 1..j-1) FREE(k)*x(k,l) + sum(k in KNIGHTS) (FREE(k)+PREP(k))*x(k,j) = ready(j) ! ontime(j) = 1 if knight in position j is freed and prepared within 20 min. forall(j in POS) do ready(j) >= 21-(21-MINT)*ontime(j) ready(j) <= MAXT-(MAXT-20)*ontime(j) end-do ! setparam("XPRS_VERBOSE", true) ! Solve the problem, displaying every integer solution that is found setcallback(XPRS_CB_INTSOL,"print_solution") maximize(TotalFreed) svgwaitclose("Close browser window to terminate model execution.", 1) !******************************************************************** procedure draw_solution svgerase ! Delete previous display ! Object group definitions (colors) svgaddgroup("gontime", "Step 2 on time", SVG_GREEN) svgsetstyle(SVG_STROKE,SVG_GREEN) svgsetstyle(SVG_FILL,SVG_CURRENT) svgsetstyle(SVG_FILLOPACITY,0.8) svgaddgroup("gstep1", "Step 1 on time", SVG_GREEN) svgsetstyle(SVG_STROKE,SVG_GREEN) svgsetstyle(SVG_FILL,SVG_CURRENT) svgsetstyle(SVG_FILLOPACITY,0.4) svgaddgroup("glate", "Step 2 late", SVG_GRAY) svgsetstyle(SVG_STROKE,SVG_GRAY) svgsetstyle(SVG_FILL,SVG_CURRENT) svgsetstyle(SVG_FILLOPACITY,0.8) svgaddgroup("gstep1l", "Step 1 late", SVG_GRAY) svgsetstyle(SVG_STROKE,SVG_GRAY) svgsetstyle(SVG_FILL,SVG_CURRENT) svgsetstyle(SVG_FILLOPACITY,0.4) svgaddgroup("gtarget", "Target time",SVG_RED) svgaddgroup("gax", "Axes", SVG_BLACK) ! Draw the tasks prevt:=0.0; SCALE:=5 forall(j in POS) do t1:=sum(k in KNIGHTS) FREE(k)*x(k,j).sol t2:=sum(k in KNIGHTS) PREP(k)*x(k,j).sol svgaddrectangle(if(prevt+t1<=21,"gstep1","gstep1l"), prevt, j*SCALE, t1, 0.8*SCALE) prevt+=t1 svgaddrectangle(if(ontime(j).sol=1,"gontime","glate"), prevt, j*SCALE, t2, 0.8*SCALE) end-do ! Draw some lines and display of the current objective value svgaddline("gtarget",20,0.5*SCALE,20,(KNIGHTS.size+2)*SCALE) svgaddarrow("gax",0,0.5*SCALE,max(j in POS) ready(j).sol + 5,0.5*SCALE) svgaddarrow("gax",0,0.5*SCALE,0,(KNIGHTS.size+2)*SCALE) svgaddtext("gax", 22, 1*SCALE, "Total on time="+TotalFreed.sol) forall(k in KNIGHTS) svgaddtext("gax", -10, (pos(k)+0.25)*SCALE, k) svgshowgraphaxes(false) svgsetgraphviewbox(-12,-1, max(j in POS) ready(j).sol + 20,(KNIGHTS.size+4)*SCALE) svgsetgraphscale(5) svgrefresh ! Redraw the graph ! Uncomment next line to pause at every iteration: svgpause end-procedure public procedure print_solution obj:=getparam("XPRS_LPOBJVAL") writeln("Number of knights freed on time: ", obj) writeln("Knight Position Ready <=20 min") forall(k in KNIGHTS) do pos(k):=round(getsol(sum(j in POS) j*x(k,j))) writeln(strfmt(k,-12), pos(k), " ", strfmt(getsol(ready(pos(k))),2), " ", if(getsol(ontime(pos(k)))=1,"yes","no")) end-do draw_solution end-procedure end-model |
sangraalind.mos |
(!****************************************************** Mosel Example Problems ====================== file sangraalind.mos ```````````````````` Sangraal problem. When the Sangraal (Holy Grail) is almost won the hero arrives at a castle where he finds 8 imprisoned knights. He is facing the task to bring the largest possible number of knights for the arrival of the Sangraal in twenty minutes' time. The time required for freeing a knight depends on his state of binding. A freed knight then needs a given amount of time to wash and recover himself physically. Model formulation using indicator constraints. Description and original model by M. Chlond: https://doi.org/10.1287/ited.4.3.66 (c) 2010 Fair Isaac Corporation author: S. Heipcke, Nov. 2010, rev. June 2011 *******************************************************!) model Sangraal uses "mmxprs", "mmjobs" forward public procedure print_solution declarations KNIGHTS = {"Agravain", "Bors", "Caradoc", "Dagonet", "Ector", "Feirefiz", "Gareth", "Harry"} K = 8 POS = 1..K FREE: array(KNIGHTS) of real ! Time to free each knight PREP: array(KNIGHTS) of real ! Time to prepare each knight x: array(KNIGHTS,POS) of mpvar ! x(k,j)=1 if knight k in position j, ! 0 otherwise ontime: array(POS) of mpvar ! ontime(j)=1 if position j finished within ! 20 minutes, 0 otherwise ready: array(POS) of mpvar ! Finish time for each position pos: array(KNIGHTS) of integer ! Position of knight end-declarations FREE :: (["Agravain", "Bors", "Caradoc", "Dagonet", "Ector", "Feirefiz", "Gareth", "Harry"])[1, 1, 2,2, 3, 4, 5,6] PREP :: (["Agravain", "Bors", "Caradoc", "Dagonet", "Ector", "Feirefiz", "Gareth", "Harry"])[15,5,15,5,10,15,10,5] forall(k in KNIGHTS, j in POS) x(k,j) is_binary forall(j in POS) ontime(j) is_binary ! Maximize number of positions finished within 20 minutes TotalFreed := sum(j in POS) ontime(j) ! Each knight in one position forall(k in KNIGHTS) sum(j in POS) x(k,j) = 1 ! Each position has one knight forall(j in POS) sum(k in KNIGHTS) x(k,j) = 1 ! Compute finish time for each position forall(j in POS) sum(k in KNIGHTS,l in 1..j-1) FREE(k)*x(k,l) + sum(k in KNIGHTS) (FREE(k)+PREP(k))*x(k,j) = ready(j) ! if ontime(j) = 1, then knight in position j is freed and prepared within ! 20 min. [ indicator constraint: ontime(j)=1 -> ready(j)<=20 ] forall(j in POS) indicator(1, ontime(j), ready(j)<=20) setparam("XPRS_VERBOSE", true) setcallback(XPRS_CB_INTSOL,"print_solution") maximize(TotalFreed) !******************************************************************** public procedure print_solution obj:=getparam("XPRS_LPOBJVAL") writeln("Number of knights freed on time: ", obj) writeln("Knight Position Ready <=20 min") forall(k in KNIGHTS) do pos(k):=round(getsol(sum(j in POS) j*x(k,j))) writeln(strfmt(k,-12), pos(k), " ", strfmt(getsol(ready(pos(k))),2), " ", if(getsol(ontime(pos(k)))=1,"yes","no")) end-do end-procedure end-model |
sangraal_ka.mos |
(!**************************************************************** CP example problems =================== file sangraal_ka.mos ```````````````````` Sangraal scheduling problem. When the Sangraal (Holy Grail) is almost won the hero arrives at a castle where he finds 8 imprisoned knights. He is facing the task to bring the largest possible number of knights for the arrival of the Sangraal in twenty minutes' time. The time required for freeing a knight depends on his state of binding. A freed knight then needs a given amount of time to wash and recover himself physically. *** This model cannot be run with a Community Licence for the provided data instance *** (c) 2008 Fair Isaac Corporation author: S. Heipcke, 2005, rev. Jan. 2018 *****************************************************************!) model "sangraal (CP)" uses "kalis" parameters K = 8 end-parameters forward public procedure print_solution setparam("kalis_default_lb", 0) declarations KNIGHTS = 1..K NAMES: array(KNIGHTS) of string ! Knights' names FREE, PREP: array(KNIGHTS) of integer ! Durations of freeing/preparing startF: array(KNIGHTS) of cpvar ! Start of freeing each knight startP: array(KNIGHTS) of cpvar ! Start of preparing each knight ontime: array(KNIGHTS) of cpvar ! ontime(i)=1 if knight i finished ! within 20 minutes, 0 otherwise Disj: array(range) of cpctr ! Disjunction betw. freeing op.s totalFreed,freedLate: cpvar ! Objective function variables Strategy: array(range) of cpbranching ! Branching strategy end-declarations NAMES:: ["Agravain", "Bors", "Caradoc", "Dagonet", "Ector", "Feirefiz", "Gareth", "Harry"] FREE :: [1, 1, 2,2, 3, 4, 5,6] PREP :: [15,5,15,5,10,15,10,5] MAXT:= sum(i in KNIGHTS) FREE(i) + max(i in KNIGHTS) PREP(i) ! Define binary variables forall(i in KNIGHTS) do ontime(i) <= 1 startF(i) <= MAXT startP(i) <= MAXT end-do ! Every knight must be freed before he can prepare himself forall(i in KNIGHTS) startF(i) + FREE(i) <= startP(i) ! Scheduling freeing operations (all disjunctive, i.e., one at a time) ct:=1 forall(i,j in KNIGHTS | i<j) do Disj(ct):= startF(i) + FREE(i) <= startF(j) or startF(j) + FREE(j) <= startF(i) Disj(ct) ! Post the constraint ct+=1 end-do ! ontime(i) = 1 if knight i is freed and prepared within 20 minutes forall(i in KNIGHTS) equiv( ontime(i)=1, startP(i)+PREP(i) <= 20 ) ! Maximize number of positions finished within 20 minutes totalFreed = sum(i in KNIGHTS) ontime(i) freedLate = sum(i in KNIGHTS) (1-ontime(i)) ! Define an enumeration strategy Strategy(1):= assign_and_forbid(KALIS_LARGEST_MAX, KALIS_MAX_TO_MIN, ontime) cp_set_branching(Strategy) ! Uncomment the followng line to use automatic linear relaxation ! setparam("kalis_auto_relax",true) ! Solve the problem cp_set_solution_callback("print_solution") ! if not cp_minimize(freedLate) then if not cp_maximize(totalFreed) then writeln("Problem is infeasible") exit(1) end-if cp_show_stats !******************************************************************** ! Solution printing public procedure print_solution writeln(" Freed Ready <=20 min") forall(i in KNIGHTS) writeln(strfmt(NAMES(i), -12), strfmt(getsol(startF(i)+FREE(i)),2), " ", strfmt(getsol(startP(i)+PREP(i)),2), " ", if(getsol(ontime(i))=1,"yes","no")) writeln("Number of knights freed on time: ", getsol(totalFreed), "\n") end-procedure end-model |
sangraal2_ka.mos |
(!**************************************************************** CP example problems =================== file sangraal2_ka.mos ````````````````````` Sangraal scheduling problem. - Formulation using tasks and resources - When the Sangraal (Holy Grail) is almost won the hero arrives at a castle where he finds 8 imprisoned knights. He is facing the task to bring the largest possible number of knights for the arrival of the Sangraal in twenty minutes' time. The time required for freeing a knight depends on his state of binding. A freed knight then needs a given amount of time to wash and recover himself physically. *** This model cannot be run with a Community Licence for the provided data instance *** (c) 2008 Fair Isaac Corporation author: S. Heipcke, 2006, rev. Jan. 2018 *****************************************************************!) model "sangraal (CP)" uses "kalis" parameters K = 8 end-parameters forward public procedure print_solution setparam("kalis_default_lb", 0) declarations KNIGHTS = 1..K NAMES: array(KNIGHTS) of string ! Knights' names FREE, PREP: array(KNIGHTS) of integer ! Durations of freeing/preparing hero: cpresource ! Resource: the hero's time taskF: array(KNIGHTS) of cptask ! Task of freeing each knight taskP: array(KNIGHTS) of cptask ! Task of preparing each knight ontime: array(KNIGHTS) of cpvar ! ontime(i)=1 if knight i finished ! within 20 minutes, 0 otherwise Disj: array(range) of cpctr ! Disjunction betw. freeing op.s totalFreed,freedLate: cpvar ! Objective function variables Strategy: cpbranching ! Branching strategy end-declarations NAMES:: ["Agravain", "Bors", "Caradoc", "Dagonet", "Ector", "Feirefiz", "Gareth", "Harry"] FREE :: [1, 1, 2,2, 3, 4, 5,6] PREP :: [15,5,15,5,10,15,10,5] MAXT:= sum(i in KNIGHTS) FREE(i) + max(i in KNIGHTS) PREP(i) ! Setting up the resource (formulation of the disjunction of freeing tasks) set_resource_attributes(hero, KALIS_UNARY_RESOURCE, 1) ! Setting up the tasks (durations and disjunctions) forall(i in KNIGHTS) do set_task_attributes(taskF(i), FREE(i), hero) set_task_attributes(taskP(i), PREP(i)) end-do ! Define bounds on decision variables forall(i in KNIGHTS) do ontime(i) <= 1 getstart(taskF(i)) <= MAXT getstart(taskP(i)) <= MAXT end-do ! Every knight must be freed before he can prepare himself forall(i in KNIGHTS) setsuccessors(taskF(i), {taskP(i)}) ! ontime(i) = 1 if knight i is freed and prepared within 20 minutes forall(i in KNIGHTS) equiv( ontime(i)=1, getend(taskP(i)) <= 20 ) ! Maximize number of positions finished within 20 minutes totalFreed = sum(i in KNIGHTS) ontime(i) freedLate = sum(i in KNIGHTS) (1-ontime(i)) ! Define a branching strategy Strategy:= assign_and_forbid(KALIS_LARGEST_MAX, KALIS_MAX_TO_MIN, ontime) cp_set_branching(Strategy) ! Solve the problem cp_set_solution_callback("print_solution") if not cp_maximize(totalFreed) then writeln("Problem is infeasible") exit(1) end-if cp_show_stats !******************************************************************** ! Solution printing public procedure print_solution writeln(" Freed Ready <=20 min") forall(i in KNIGHTS) writeln(strfmt(NAMES(i), -12), strfmt(getsol(getend(taskF(i))),2), " ", strfmt(getsol(getend(taskP(i))),2), " ", if(getsol(ontime(i))=1,"yes","no")) writeln("Number of knights freed on time: ", getsol(totalFreed), "\n") end-procedure end-model |
© 2001-2019 Fair Isaac Corporation. All rights reserved. This documentation is the property of Fair Isaac Corporation (“FICO”). Receipt or possession of this documentation does not convey rights to disclose, reproduce, make derivative works, use, or allow others to use it except solely for internal evaluation purposes to determine whether to purchase a license to the software described in this documentation, or as otherwise set forth in a written software license agreement between you and FICO (or a FICO affiliate). Use of this documentation and the software described in it must conform strictly to the foregoing permitted uses, and no other use is permitted.