Initializing help system before first use

Modeling with user functions


Type: Programming
Rating: 2 (easy-medium)
Description: Shows how to create and solve a nonlinear problem whose constraints and objective functions are defined as user functions
File(s): example_userfunc.py


example_userfunc.py
#
# Python equivalent of the ComplexUserFunction.c example in
# examples/nonlinear/c directory
#

# Define objective and constraint as user functions that return
# derivatives
#
# Minimize myobj (y,z,v,w)
#   s.t.
#   ball (x,t) <= 730
#   1 <= x <= 2
#   2 <= y <= 3
#   3 <= z <= 4
#   4 <= v <= 5
#   5 <= w <= 6
#
# where
#
# myobj (y,z,v,w) = y**2 + z - v + w**2
# ball  (x,t) = x**2 + t**2

import xpress


def myobj(y, z, v, w):
    '''Return value of the objective function with the derivative w.r.t. all variables passed
    '''
    return (y**2 + z - v + w**2,  # value of the function
            2*y,  # derivative w.r.t. y
            1,    # derivative w.r.t. z
            -1,   # derivative w.r.t. v
            2*w)  # derivative w.r.t. w


def ball(x, t):
    '''Return value of the left-hand side of the constraint with its derivatives
    '''
    return (x**2 + t**2,
            2*x,
            2*t)


def myobj_noderiv(y, z, v, w):
    '''Return objective without derivatives
    '''
    return (y**2 + z - v + w**2)  # value of the function


def ball_noderiv(x, t):
    '''Return left-hand side of constraint without derivatives
    '''
    return (x**2 + t**2)


x = xpress.var(lb=1, ub=2)
y = xpress.var(lb=2, ub=3)
z = xpress.var(lb=3, ub=4)
v = xpress.var(lb=4, ub=5)
w = xpress.var(lb=5, ub=6)

t = xpress.var(lb=-xpress.infinity)  # free variable

p = xpress.problem()

p.addVariable(x, y, z, v, w, t)

p.setObjective(t)
p.addConstraint(t == xpress.user(myobj, y, z, v, w, derivatives=True))
p.addConstraint(xpress.user(ball, x, t, derivatives=True) <= 730)

p.solve()

print('Problem solved using derivatives. Objective:', p.getObjVal(), '; solution:', p.getSolution())


p = xpress.problem()

p.addVariable(x, y, z, v, w, t)

p.setObjective(t)
p.addConstraint(t == xpress.user(myobj_noderiv, y, z, v, w))
p.addConstraint(xpress.user(ball_noderiv, x, t) <= 730)

p.solve()

print('Problem solved without derivatives. Objective:', p.getObjVal(), '; solution:', p.getSolution())

p = xpress.problem()

p.addVariable(x, y, z, v, w, t)

p.setObjective(t)
p.addConstraint(t == xpress.user(myobj_noderiv, y, z, v, w))
p.addConstraint(xpress.user(ball, x, t, derivatives=True) <= 730)

p.solve()

print('Problem solved with a mixed setting. Objective:', p.getObjVal(), '; solution:', p.getSolution())

© 2001-2019 Fair Isaac Corporation. All rights reserved. This documentation is the property of Fair Isaac Corporation (“FICO”). Receipt or possession of this documentation does not convey rights to disclose, reproduce, make derivative works, use, or allow others to use it except solely for internal evaluation purposes to determine whether to purchase a license to the software described in this documentation, or as otherwise set forth in a written software license agreement between you and FICO (or a FICO affiliate). Use of this documentation and the software described in it must conform strictly to the foregoing permitted uses, and no other use is permitted.