Initializing help system before first use

Cutstk - Column generation for a cutting stock problem


Type: Cutting stock
Rating: 4 (medium-difficult)
Description: This example features iteratively adding new variables, basis in/output and working with subproblems. The column generation algorithm is implemented as a loop over the root node of the MIP problem.
File(s): xbcutstk.cxx


xbcutstk.cxx
/********************************************************
  Xpress-BCL C++ Example Problems
  ===============================

  file xbcutstk.cxx
  `````````````````
  Cutting stock problem, solved by column (= cutting 
  pattern) generation heuristic looping over the
  root node.

  (c) 2008 Fair Isaac Corporation
      author: S.Heipcke, 2001, rev. Mar. 2014
********************************************************/

#include <iostream>
#include <cmath>
#include "xprb_cpp.h"
#include "xprs.h"

using namespace std;
using namespace ::dashoptimization;

#define NWIDTHS 5
#define MAXWIDTH 94

#define EPS 1e-6
#define MAXCOL 10

/****DATA****/
double WIDTH[] = {17, 21, 22.5,  24, 29.5};  /* Possible widths */
int DEMAND[] =  {150, 96,   48, 108,  227};  /* Demand per width */
int PATTERNS[NWIDTHS][NWIDTHS];              /* (Basic) cutting patterns */

XPRBvar pat[NWIDTHS+MAXCOL];               /* Rolls per pattern */
XPRBctr dem[NWIDTHS];                      /* Demand constraints */
XPRBctr cobj;                              /* Objective function */

XPRBprob p("CutStock");                    /* Initialize a new problem in BCL */

double knapsack(int N, double *c, double *a, double R, int *d, int *xbest);

/***********************************************************************/

void modCutStock()
{
 int i,j;
 XPRBexpr le;

 for(j=0;j<NWIDTHS;j++) PATTERNS[j][j]=(int)floor(MAXWIDTH/WIDTH[j]);
 
 /****VARIABLES****/
 for(j=0;j<NWIDTHS;j++)
  pat[j]=p.newVar(XPRBnewname("pat_%d",j+1), XPRB_UI, 0,
       (int)ceil((double)DEMAND[j]/PATTERNS[j][j]));
       
/****OBJECTIVE****/
 for(j=0;j<NWIDTHS;j++) le += pat[j];    /* Minimize total number of rolls */
 cobj = p.newCtr("OBJ", le);
 p.setObj(cobj);

/****CONSTRAINTS****/
 for(i=0;i<NWIDTHS;i++)                  /* Satisfy the demand per width */
 { 
  le = 0;
  for(j=0;j<NWIDTHS;j++)
   le += PATTERNS[i][j] * pat[j];
  dem[i] = p.newCtr("Demand", le >= DEMAND[i]);
 }
}

/**************************************************************************/
/*  Column generation loop at the top node:                               */
/*    solve the LP and save the basis                                     */
/*    get the solution values                                             */
/*    generate new column(s) (=cutting pattern)                           */
/*    load the modified problem and load the saved basis                  */
/**************************************************************************/
void solveCutStock()
{
 double objval;                  /* Objective value */
 int i,j;
 int starttime;
 int npatt, npass;               /* Counters for columns and passes */
 double solpat[NWIDTHS+MAXCOL];  /* Solution values for variables pat */
 double dualdem[NWIDTHS];        /* Dual values of demand constraints */
 XPRBbasis basis;
 double dw,z;
 int x[NWIDTHS];

 starttime=XPRB::getTime();
 npatt = NWIDTHS;

 for(npass=0;npass<MAXCOL;npass++)
 {
  p.lpOptimize("");              /* Solve the LP */
  basis = p.saveBasis();         /* Save the current basis */
  objval = p.getObjVal();        /* Get the objective value */     

      /* Get the solution values: */
  for(j=0;j<npatt;j++)  solpat[j]=pat[j].getSol();
  for(i=0;i<NWIDTHS;i++)  dualdem[i]=dem[i].getDual();
  
      /* Solve integer knapsack problem  z = min{cx : ax<=r, x in Z^n}
         with r=MAXWIDTH, n=NWIDTHS */
  z = knapsack(NWIDTHS, dualdem, WIDTH, (double)MAXWIDTH, DEMAND, x);
  cout << "(" << (XPRB::getTime()-starttime)/1000.0 << " sec) Pass " << npass+1 << ": ";
   
  if(z < 1+EPS)
  {
   cout << "no profitable column found." << endl << endl;
   basis.reset();                  /* No need to keep the basis any longer */
   break;
  }
  else 
  {
      /* Print the new pattern: */
   cout << "new pattern found with marginal cost " << z-1 << endl << "   ";
   cout << "Widths distribution: ";
   dw=0;
   for(i=0;i<NWIDTHS;i++)  
   {
    cout << WIDTH[i] << ":" << x[i] << "  ";
    dw += WIDTH[i]*x[i];
   } 
   cout << "Total width: " << dw << endl;

      /* Create a new variable for this pattern: */
   pat[npatt]=p.newVar(XPRBnewname("pat_%d",npatt+1),XPRB_UI);

   cobj += pat[npatt];             /* Add new var. to the objective */
   dw=0;
   for(i=0; i<NWIDTHS; i++)        /* Add new var. to demand constraints*/
    if(x[i] > EPS)
    {
     dem[i] += x[i]*pat[npatt];
     if((int)ceil((double)DEMAND[i]/x[i]) > dw)
      dw = (int)ceil((double)DEMAND[i]/x[i]);
    }
   pat[npatt].setUB(dw);           /* Change the upper bound on the new var.*/  

   npatt++;

   p.loadMat();                    /* Reload the problem */
   p.loadBasis(basis);             /* Load the saved basis */
   basis.reset();                  /* No need to keep the basis any longer */
  }
 }

 p.mipOptimize("");                /* Solve the MIP */
  
 cout << "(" << (XPRB::getTime()-starttime)/1000.0 << " sec) Optimal solution: " << p.getObjVal() << " rolls, " << npatt << " patterns" << endl << "   "; 
 cout << "Rolls per pattern: ";
 for(i=0;i<npatt;i++) cout << pat[i].getSol() << ", ";
 cout << endl;   
}

/**************************************************************************/
/* Integer Knapsack Algorithm for solving the integer knapsack problem    */
/*    z = max{cx : ax <= R, x <= d, x in Z^N}                             */
/*                                                                        */
/* Input data:                                                            */
/*   N:        Number of item types                                       */
/*   c[i]:     Unit profit of item type i, i=1..n                         */
/*   a[i]:     Unit resource use of item type i, i=1..n                   */
/*   R:        Total resource available                                   */
/*   d[i]:     Demand for item type i, i=1..n                             */
/* Return values:                                                         */
/*   xbest[i]: Number of items of type i used in optimal solution         */
/*   zbest:    Value of optimal solution                                  */
/**************************************************************************/
double knapsack(int N, double *c, double *a, double R, int *d, int *xbest)
{
 int j;
 double zbest = 0.0;
 XPRBvar *x;
 XPRBexpr klobj, knap;
 XPRBprob pk("Knapsack");

/*
 cout << "Solving z = max{cx : ax <= b; x in Z^n}\n   c   =";
 for (j = 0; j < N; j++) cout << " " << c[j] << ",";
 cout << "\n   a   =";
 for (j = 0; j < N; j++) cout << " " << a[j] << ",";
 cout << "\n   c/a =";
 for (j = 0; j < N; j++) cout << " " << c[j]/a[j] << ",";
 cout << "\n   b   = " << R << endl;
*/
 
 x = new XPRBvar[N];
 if(x==NULL) cout << "Allocating memory for variables failed." << endl;
 for(j=0;j<N;j++) x[j]=pk.newVar("x", XPRB_UI, 0, d[j]);

 for(j=0;j<N;j++) klobj += c[j]*x[j];
 pk.setObj(pk.newCtr("OBJ",klobj));  
 for(j=0;j<N;j++) knap += a[j]*x[j];
 pk.newCtr("KnapXPRBctr", knap <= R);
 pk.setSense(XPRB_MAXIM);
 pk.mipOptimize("");

 zbest = pk.getObjVal();
 for(j=0;j<N;j++) xbest[j]=(int)floor(x[j].getSol() + 0.5);
/*
 cout << "   z = " << zbest << endl << "   x =";
 for(j=0; j<N; j++) cout << " " << xbest[j] << ",";
 cout << endl;
*/

 delete [] x;
 
 return (zbest);
}

/***********************************************************************/

int main(int argc, char **argv)
{
 modCutStock();                    /* Model the problem */
 solveCutStock();                  /* Solve the problem */
  
 return 0;
} 


© 2001-2020 Fair Isaac Corporation. All rights reserved. This documentation is the property of Fair Isaac Corporation (“FICO”). Receipt or possession of this documentation does not convey rights to disclose, reproduce, make derivative works, use, or allow others to use it except solely for internal evaluation purposes to determine whether to purchase a license to the software described in this documentation, or as otherwise set forth in a written software license agreement between you and FICO (or a FICO affiliate). Use of this documentation and the software described in it must conform strictly to the foregoing permitted uses, and no other use is permitted.