Initializing help system before first use

Els - An economic lot-sizing problem solved by cut-and-branch and branch-and-cut heuristics


Type: Lot-sizing
Rating: 5 (difficult)
Description: The version 'xbels' of this example shows how to implement cut-and-branch (= cut generation at the root node of the MIP search) and 'xbelsc' implements a branch-and-cut (= cut generation at the MIP search tree nodes) algorithm using the cut manager.
File(s): xbels.cs, xbelsc.cs


xbels.cs
/********************************************************/
/*  Xpress-BCL C# Example Problems                      */
/*  ==============================                      */
/*                                                      */
/*  file xbels.cs                                       */
/*  `````````````                                       */
/*  Example for the use of Xpress-BCL                   */
/*  (Economic lot sizing, ELS, problem, solved by       */
/*   adding(l,S)-inequalities) in several rounds        */
/*   looping over the root node)                        */
/*                                                      */
/*  ELS considers production planning over a horizon    */
/*  of T periods. In period t, t=1,...,T, there is a    */
/*  given demand DEMAND[t] that must be satisfied by    */
/*  production prod[t] in period t and by inventory     */
/*  carried over from previous periods. There is a      */
/*  set-up up cost SETUPCOST[t] associated with         */
/*  production in period t.  The unit production cost   */
/*  in period t is PRODCOST[t]. There is no inventory   */
/*  or stock-holding cost.                              */
/*                                                      */
/*  (c) 2008 Fair Isaac Corporation                     */
/*      authors: S.Heipcke, D.Brett.                    */
/********************************************************/

using System;
using System.Text;
using System.IO;
using Optimizer;
using BCL;


namespace Examples
{

    public class TestAdvEls
    {
        const double EPS = 1e-6;

        const int T = 6;                       /* Number of time periods */

        /****DATA****/
        int[] DEMAND    = { 1, 3, 5, 3, 4, 2}; /* Demand per period */
        int[] SETUPCOST = {17,16,11, 6, 9, 6}; /* Setup cost per period */
        int[] PRODCOST  = { 5, 3, 2, 1, 3, 1}; /* Production cost per period */
        int[,] D = new int[T,T];               /* Total demand,periods t1-t2 */

        XPRBvar[] prod = new XPRBvar[T];       /* Production in period t */
        XPRBvar[] setup = new XPRBvar[T];      /* Setup in period t */

        XPRBprob p = new XPRBprob("Els");      /* Initialize a new BCL prob */

        /*********************************************************************/

        public void modEls()
        {
            int s,t,k;
            XPRBexpr cobj,le; 

            for(s=0;s<T;s++)
                for(t=0;t<T;t++)
                    for(k=s;k<=t;k++)
                        D[s,t] += DEMAND[k];

            /****VARIABLES****/
            for(t=0;t<T;t++)
            {
                prod[t]=p.newVar("prod" + (t+1));
                setup[t]=p.newVar("setup" + (t+1), BCLconstant.XPRB_BV);   
            }

            /****OBJECTIVE****/
            cobj = new XPRBexpr();
            for(t=0;t<T;t++)                       /* Minimize total cost */
                cobj += SETUPCOST[t]*setup[t] + PRODCOST[t]*prod[t];
            p.setObj(p.newCtr("Objective", cobj));

            /****CONSTRAINTS****/
            /* Production in period t must not exceed the total demand for the
            remaining periods; if there is production during t then there
            is a setup in t */
            for(t=0;t<T;t++)
                p.newCtr("Production", prod[t] <= D[t,T-1]*setup[t]); 

            /* Production in periods 0 to t must satisfy the total demand
            during this period of time */
            for(t=0;t<T;t++)
            {
                le = new XPRBexpr(0);
                for(s=0;s<=t;s++) le += prod[s];
                p.newCtr("Demand", le >= D[0,t]);
            }

        }

        /*********************************************************************/
        /*  Cut generation loop at the top node:                             */
        /*    solve the LP and save the basis                                */
        /*    get the solution values                                        */
        /*    identify and set up violated constraints                       */
        /*    load the modified problem and load the saved basis             */
        /*********************************************************************/
        public void solveEls()
        {
            double objval;               /* Objective value */
            int t,l;
            int starttime;
            int ncut, npass, npcut;      /* Counters for cuts and passes */
             
             /* Solution values for var.s prod & setup */
            double[] solprod = new double[T];
            double[] solsetup = new double[T];  
            
            double ds;
            XPRBbasis basis;
            XPRBexpr le;
            XPRSprob xprsp = p.getXPRSprob();

            starttime=XPRB.getTime();

            /* Disable automatic cuts - we use our own */
            xprsp.CutStrategy = 0;           
            
            /* Switch presolve off */
            xprsp.Presolve = 0;
            
            ncut = npass = 0;

            do
            {
                npass++;
                npcut = 0;
                p.lpOptimize("p");              /* Solve the LP */
                basis = p.saveBasis();      /* Save the current basis */
                objval = p.getObjVal();     /* Get the objective value */

                /* Get the solution values: */
                for(t=0;t<T;t++)
                {
                    solprod[t]=prod[t].getSol();
                    solsetup[t]=setup[t].getSol();
                }

                /* Search for violated constraints: */
                for(l=0;l<T;l++)
                {
                    for (ds=0.0, t=0; t<=l; t++)
                    {
                        if(solprod[t] < D[t,l]*solsetup[t] + EPS)  
                            ds += solprod[t];
                        else  
                            ds += D[t,l]*solsetup[t];
                    }

                    /* Add the violated inequality: the minimum of the actual
                    production prod[t] and the maximum potential production 
                    D[t][l]*setup[t] in periods 0 to l must at least equal the
                    total demand in periods 0 to l.
                    sum(t=1:l) min(prod[t], D[t][l]*setup[t]) >= D[0][l]
                    */
                    if(ds < D[0,l] - EPS) 
                    {
                        le = new XPRBexpr(0);
                        for(t=0;t<=l;t++) 
                        {
                            if (solprod[t] < D[t,l]*solsetup[t] + EPS)
                                le += prod[t];
                            else
                                le += D[t,l]*setup[t];
                        }
                        p.newCtr("cut" + (ncut+1), le >= D[0,l]);
                        ncut++; 
                        npcut++;
                    }
                }

                System.Console.WriteLine("Pass " + npass + " (" + 
                	(XPRB.getTime()-starttime)/1000.0 + 
                	" sec), objective value " + objval + ", cuts added: " +
                	npcut + " (total " + ncut + ")");

                if(npcut==0)
                    System.Console.Write("Optimal integer solution found:\n");
                else
                { 
                    p.loadMat();         /* Reload the problem */
                    p.loadBasis(basis);  /* Load the saved basis */
                    basis.reset();       /* No need to keep basis any longer */
                }
            } while(npcut>0);

            /* Print out the solution: */
            for(t=0;t<T;t++)
                System.Console.WriteLine("Period " + (t+1) + ": prod " + 
                	prod[t].getSol() + " (demand: " + DEMAND[t] + 
                	", cost: " + PRODCOST[t] + "), setup " + 
                	setup[t].getSol() + " (cost: " + SETUPCOST[t] + ")"); 
 
        }

        /*********************************************************************/

        public static void Main()
        {
           XPRB.init();
           TestAdvEls TestInstance = new TestAdvEls();

            TestInstance.modEls();       /* Model the problem */
            TestInstance.solveEls();     /* Solve the problem */

            return;
        } 

    }

}

xbelsc.cs
/********************************************************
  Xpress-BCL C# Example Problems
  ==============================

  file xbelsc.cs 
  ``````````````
  Economic lot sizing, ELS, problem, solved by adding
  (l,S)-inequalities) in a branch-and-cut heuristic 
  (using the cut manager).
  
  ELS considers production planning over a horizon
  of T periods. In period t, t=1,...,T, there is a
  given demand DEMAND[t] that must be satisfied by
  production prod[t] in period t and by inventory
  carried over from previous periods. There is a
  set-up up cost SETUPCOST[t] associated with
  production in period t. The unit production cost
  in period t is PRODCOST[t]. There is no inventory
  or stock-holding cost.

  (c) 2008 Fair Isaac Corporation
      authors: S.Heipcke, D.Brett.
********************************************************/

using System;
using System.Text;
using System.IO;
using Optimizer;
using BCL;


namespace Examples
{

    public struct XPRBprobStruct
    {
        public XPRBprob prob;
        public double tol;
    };

    public class TestAdvElsCallback
    {
        const int T = 6;                             /* Number of time periods */

        /****DATA****/
        int[] DEMAND    = { 1, 3, 5, 3, 4, 2};  /* Demand per period */
        int[] SETUPCOST = {17,16,11, 6, 9, 6};  /* Setup cost per period */
        int[] PRODCOST  = { 5, 3, 2, 1, 3, 1};  /* Production cost per period */
        int[,] D = new int[T, T];               /* Total demand in periods t1 - t2 */

        XPRBvar[] prod = new XPRBvar[T];                        /* Production in period t */
        XPRBvar[] setup = new XPRBvar[T];                       /* Setup in period t */


        XPRBprob p = new XPRBprob("ElsC");                      /* Initialize a new problem in BCL */

        /***********************************************************************/

        public void modEls()
        {
            int s, t, k;
            XPRBexpr cobj, le;

            for (s = 0; s < T; s++)
                for (t = 0; t < T; t++)
                    for (k = s; k <= t; k++)
                        D[s, t] += DEMAND[k];

            /****VARIABLES****/
            for (t = 0; t < T; t++)
            {
                prod[t] = p.newVar("prod" + (t + 1));
                setup[t] = p.newVar("setup" + (t + 1), BCLconstant.XPRB_BV);
            }

            /****OBJECTIVE****/
            cobj = new XPRBexpr();
            for (t = 0; t < T; t++)                       /* Minimize total cost */
                cobj += SETUPCOST[t] * setup[t] + PRODCOST[t] * prod[t];
            p.setObj(p.newCtr(cobj));

            /****CONSTRAINTS****/
            /* Production in period t must not exceed the total demand for the
            remaining periods; if there is production during t then there
            is a setup in t */
            for (t = 0; t < T; t++)
                p.newCtr("Production", prod[t] <= D[t, T - 1] * setup[t]);

            /* Production in periods 0 to t must satisfy the total demand
            during this period of time */
            for (t = 0; t < T; t++)
            {
                le = new XPRBexpr(0);
                for (s = 0; s <= t; s++) le += prod[s];
                p.newCtr("Demand", le >= D[0, t]);
            }

        }

        /**************************************************************************/
        /*  Cut generation loop at the tree node:                                 */
        /*    get the solution values                                             */
        /*    identify and set up violated constraints                            */
        /*    add cuts to the matrix                                              */
        /**************************************************************************/
        public int cbNode(XPRSprob xprsp, object mobj)
        {
            XPRBprobStruct mo;
            double objval;                  /* Objective value */
            int t, l;
            int ncut;                       /* Counters for cuts */
            double[] solprod = new double[T];
            double[] solsetup = new double[T]; /* Solution values for var.s prod & setup */
            double ds;
            int depth, node;
            XPRBcut[] cut = new XPRBcut[T];
            XPRBexpr le;

            mo = (XPRBprobStruct)mobj;

            ncut = 0;

            depth = xprsp.NodeDepth;
            node = xprsp.Nodes;

            /* Get the solution values */
            mo.prob.beginCB(xprsp);
            mo.prob.sync(BCLconstant.XPRB_XPRS_SOL);
            for (t = 0; t < T; t++)
            {
                solprod[t] = prod[t].getSol();
                solsetup[t] = setup[t].getSol();
            }

            /* Search for violated constraints: */
            for (l = 0; l < T; l++)
            {
                for (ds = 0.0, t = 0; t <= l; t++)
                {
                    if (solprod[t] < D[t, l] * solsetup[t] + mo.tol) ds += solprod[t];
                    else ds += D[t, l] * solsetup[t];
                }

                /* Add the violated inequality: the minimum of the actual production
                prod[t] and the maximum potential production D[t][l]*setup[t] 
                in periods 0 to l must at least equal the total demand in periods 
                0 to l.
                sum(t=1:l) min(prod[t], D[t][l]*setup[t]) >= D[0][l]
                */
                if (ds < D[0, l] - mo.tol)
                {
                    le = new XPRBexpr(0);
                    for (t = 0; t <= l; t++)
                    {
                        if (solprod[t] < D[t, l] * solsetup[t] + mo.tol)
                            le += prod[t];
                        else
                            le += D[t, l] * setup[t];
                    }
                    cut[ncut] = mo.prob.newCut(le >= D[0, l]);
                    ncut++;
                }
            }

            /* Add cuts to the problem */
            if (ncut > 0)
            {
                mo.prob.addCuts(cut, ncut);
                objval = xprsp.LPObjVal;
                System.Console.Write("Cuts added : " + ncut + " (depth " + depth + ", node ");
                System.Console.WriteLine(node + "), obj. " + objval);
            }
            mo.prob.endCB();

            return 0;
        }

        /***********************************************************************/
        public void treeCutGen()
        {
            IntPtr oprob;
            XPRBprobStruct mo;
            double feastol;
            int starttime, t;
            CutmgrCallback del = new CutmgrCallback(cbNode);
            XPRSprob xprsp = p.getXPRSprob();

            starttime = XPRB.getTime();

            xprsp.LPLog = 0;
            xprsp.MIPLog = 3;

            xprsp.CutStrategy = 0;
            xprsp.Presolve = 0;
            xprsp.ExtraRows = 5000;

            feastol = xprsp.FeasTol;
            feastol *= 10;

            mo.prob = p;
            mo.tol = feastol;
            p.setCutMode(1);
            xprsp.AddCutmgrCallback(del, (object)mo);

            p.mipOptimize();                                    /* Solve the MIP */
            System.Console.Write("(" + (XPRB.getTime() - starttime) / 1000.0 + " sec) Global status ");
            System.Console.WriteLine(p.getMIPStat() + ", best solution: " + p.getObjVal());
            for (t = 0; t < T; t++)
            {
                System.Console.Write("Period " + (t + 1) + ": prod " + prod[t].getSol() + " (demand: ");
                System.Console.Write(DEMAND[t] + ", cost: " + PRODCOST[t] + "), setup ");
                System.Console.WriteLine(setup[t].getSol() + " (cost: " + SETUPCOST[t] + ")");
            }
        }

        /***********************************************************************/

        public static void Main()
        {
            XPRB.init();
            TestAdvElsCallback TestInstance = new TestAdvElsCallback();

            TestInstance.modEls();                    /* Model the problem */
            TestInstance.treeCutGen();                /* Solve the problem */

            return;
        }

    }

}

© 2001-2020 Fair Isaac Corporation. All rights reserved. This documentation is the property of Fair Isaac Corporation (“FICO”). Receipt or possession of this documentation does not convey rights to disclose, reproduce, make derivative works, use, or allow others to use it except solely for internal evaluation purposes to determine whether to purchase a license to the software described in this documentation, or as otherwise set forth in a written software license agreement between you and FICO (or a FICO affiliate). Use of this documentation and the software described in it must conform strictly to the foregoing permitted uses, and no other use is permitted.