Initializing help system before first use

Chgprobs - Working with multiple problems


Type: Programming
Rating: 2 (easy-medium)
Description: This example defines 3 very small problems, making changes to the problem definition after matrix generation and retrieving solution information. It also shows BCL warnings.
File(s): xbexpl.java


xbexpl.java
/********************************************************
  Xpress-BCL Java Example Problems
  ================================

  file xbexpl.java
  ````````````````
  Working with multiple problems.

  (c) 2008 Fair Isaac Corporation
      author: S.Heipcke, Jan. 2000, rev. Mar. 2011
********************************************************/

import java.io.*;
import com.dashoptimization.*;

/********************************************************/
/* This file illustrates how to                         */
/* - do changes to the problem definition               */
/* - retrieve solution information                      */
/* - define and work with several problems              */
/*                                                      */ 
/* Set at least one of the following options to true.   */
/* It is possible to define all together. In this case  */
/* the last function (expl5) that shows how to switch   */
/* between problems is activated too.                   */
/********************************************************/
public class xbexpl
{
 static final boolean CHGCTR = true;    /* Accessing & modifying constraints */
 static final boolean CHGVAR = true;    /* Accessing & modifying variables */
 static final boolean UNBOUNDED = true; /* Solve a small unbounded problem */

 static XPRB bcl;
 static XPRBprob p2, p3, p4;

/***********************************************************************/

 public static void main(String[] args)
 {
  bcl = new XPRB();              /* Initialize BCL */
  try
  {
   if(CHGCTR)
    expl2();
   if(CHGVAR)
    expl3(); 
   if(UNBOUNDED)
   {
    expl4();  
    if(CHGCTR&&CHGVAR)
     expl5();
   }
  }
  catch(IOException e)
  {
   System.err.println(e.getMessage());
   System.exit(1);   
  }
 } 

/***********************************************************************/

    /**** Expl 2: changing bounds and operations on constraints ****/
 static void expl2() throws IOException
 {
  XPRBvar[] x;
  XPRBctr[] ctr;
  XPRBexpr lobj;
  double[] objcof={2.0,1.0,1.0,1.0,0};
  int i;
        
  p2 = bcl.newProb("expl2");         /* Create a new problem */

                /* Define 5 integer variables in 0,...,100 */
  x = new XPRBvar[5];
  for(i=0;i<5;i++) x[i] = p2.newVar("x_"+i, XPRB.UI,0,100);

                /* Create the constraints:
                   ctr0: x0 +10 <= x1
                   ctr1: x1     <= x3
                   ctr2: x1 + 8 <= x2 */
  ctr = new XPRBctr[4];
  ctr[0]=p2.newCtr("ctr0", x[0].add(10).lEql(x[1]) );
  ctr[1]=p2.newCtr("ctr1", x[1]        .lEql(x[3]) );
  ctr[2]=p2.newCtr("ctr2", x[1].add(8) .lEql(x[2]) );
        
  lobj = new XPRBexpr();
  for(i=0;i<5;i++) lobj.add(x[i].mul(objcof[i])); 
  p2.setObj(lobj);              /* Select objective function */ 
  p2.setSense(XPRB.MINIM);      /* Set objective sense to minimization */

  System.out.println("Problem status: " + p2.getProbStat() + " LP status: "
    + p2.getLPStat() + " MIP status: " + p2.getMIPStat());
  p2.exportProb(XPRB.LP,"expl2");  /* Matrix generation and output */
  p2.print();                   /* Print current problem definition */

  p2.lpOptimize("");            /* Solve the LP */
  System.out.println("Problem status: " + p2.getProbStat() + " LP status: "
    + p2.getLPStat() + " MIP status: " + p2.getMIPStat());
  System.out.println("Objective: " + p2.getObjVal());
  for(i=0;i<4;i++)              /* Print solution values */
   System.out.print(x[i].getName() + ":" + x[i].getSol() + " ");
  System.out.println();
 
  ctr[0].setRange(-15,-5);      /* Transform constraint into range constr. */
  System.out.println("\n<<<<<<<<Constraint transformed into range:>>>>>>>>");
  p2.print();                   /* Print current problem definition */
  for(i=0;i<4;i++) 
  { x[i].print(); System.out.print(" "); } /* Print new variable bounds */
  System.out.println();
  p2.mipOptimize("");           /* Solve the MIP */
  System.out.println("Problem status: " + p2.getProbStat() + " LP status: "
    + p2.getLPStat() + " MIP status: " + p2.getMIPStat());
  System.out.println("Objective: " + p2.getObjVal());
  for(i=0;i<4;i++)              /* Print solution values */
   System.out.print(x[i].getName() + ":" + x[i].getSol() + " ");
  System.out.println();
 
  ctr[0].setType(XPRB.L);       /* Change range constraint back to constraint */
  System.out.println("\n<<<<<<<<Constraint restored to inequality:>>>>>>>>");
  p2.print();                   /* Print current problem definition */
  ctr[0].setTerm(-10);          /* Set new RHS value */
  System.out.println("<<<<<<<<Restore original RHS value:>>>>>>>>");
  p2.print();                   /* Print current problem definition */

  x[1].setLB(15);               /* Change the bound on a variable */
  System.out.println("<<<<<<<<Variable bound changed:>>>>>>>>");
  for(i=0;i<4;i++) 
  { x[i].print(); System.out.print(" "); } /* Print new variable bounds */
  System.out.println();
  p2.mipOptimize("");           /* Solve the MIP */
  System.out.println("Problem status: " + p2.getProbStat() + " LP status: "
    + p2.getLPStat() + " MIP status: " + p2.getMIPStat());
  System.out.println("Objective: " + p2.getObjVal());
  for(i=0;i<4;i++)              /* Print solution values */
   System.out.print(x[i].getName() + ":" + x[i].getSol() + " ");
  System.out.println();

                                /* Change constraint coefficient and RHS */
  ctr[1].setTerm(x[1],-3);      /* ctr1: x1 <= 3*x3 */
  ctr[0].addTerm(-10);          /* ctr0: x0 + 20 <= x1 */
  System.out.println("\n<<<<<<<<Constraint coefficient and RHS changed:>>>>>>>>");
  for(i=0;i<3;i++) ctr[i].print();
  for(i=0;i<4;i++) 
  { x[i].print(); System.out.print(" "); } /* Print new variable bounds */
  System.out.println();
  p2.mipOptimize("");           /* Solve the MIP */
  System.out.println("Problem status: " + p2.getProbStat() + " LP status: "
    + p2.getLPStat() + " MIP status: " + p2.getMIPStat());
  System.out.println("Objective: " + p2.getObjVal());
  for(i=0;i<4;i++)              /* Print solution values */
   System.out.print(x[i].getName() + ":" + x[i].getSol() + " ");
  System.out.println();

                                /* Change constraint type */
  ctr[2].setType(XPRB.G);       /* ctr2: x1 + 8 >= x2 */
  System.out.println("\n<<<<<<<<Constraint type changed:>>>>>>>>");
  for(i=0;i<3;i++) ctr[i].print();
  for(i=0;i<4;i++) 
  { x[i].print(); System.out.print(" "); } /* Print variable bounds */
  System.out.println();
  p2.mipOptimize("");           /* Solve the MIP */
  System.out.println("Problem status: " + p2.getProbStat() + " LP status: "
    + p2.getLPStat() + " MIP status: " + p2.getMIPStat());
  System.out.println("Objective: " + p2.getObjVal());
  for(i=0;i<4;i++)              /* Print solution values */
   System.out.print(x[i].getName() + ":" + x[i].getSol() + " ");
  System.out.println();

                                /* Add another constraint ctr3: x0 +37<= x2 */
  ctr[3] = p2.newCtr("ctr3", x[0].add(37).lEql(x[2]) );
  System.out.println("\n<<<<<<<<Constraint added:>>>>>>>>");
  p2.print();
  for(i=0;i<4;i++) 
  { x[i].print(); System.out.print(" "); } /* Print variable bounds */
  System.out.println();
  p2.mipOptimize("");           /* Solve the MIP */
  System.out.println("Problem status: " + p2.getProbStat() + " LP status: "
    + p2.getLPStat() + " MIP status: " + p2.getMIPStat());
  System.out.println("Objective: " + p2.getObjVal());
  for(i=0;i<4;i++)              /* Print solution values */
   System.out.print(x[i].getName() + ":" + x[i].getSol() + " ");
  System.out.println();

                                /* Delete a constraint */
  p2.delCtr(ctr[2]);      
  System.out.println("\n<<<<<<<<Constraint deleted:>>>>>>>>");
  p2.print();
  for(i=0;i<4;i++) 
  { x[i].print(); System.out.print(" "); } /* Print variable bounds */
  System.out.println();
  p2.mipOptimize("");           /* Solve the MIP */
  System.out.println("Problem status: " + p2.getProbStat() + " LP status: "
    + p2.getLPStat() + " MIP status: " + p2.getMIPStat());
  System.out.println("Objective: " + p2.getObjVal());
  for(i=0;i<4;i++)              /* Print solution values */
   System.out.print(x[i].getName() + ":" + x[i].getSol() + " ");
  System.out.println();
 }

    /**** Expl 3: Knapsack problem: accessing variables ****/
 static void expl3() throws IOException
 {
  XPRBvar[] x;
  XPRBexpr le, lobj;
  XPRBctr ctr;
  double[] coeff={30.0, 32.0, 27.0, 11.0};
  double[] objcof={9.0, 15.0, 8.0, 3.0};
  int i;
         
  p3 = bcl.newProb("expl3");     /* Create a new problem */

  x = new XPRBvar[4];
  for(i=0;i<4;i++)               /* Define 4 binary variables */
   x[i] = p3.newVar("x_"+i, XPRB.BV);

                                 /* Create the knapsack constraint:
                                    sum_i coeff[i]*x[i] <= 70  */
  le = new XPRBexpr();
  for(i=0;i<4;i++) le.add(x[i].mul(coeff[i])); 
  ctr = p3.newCtr("sumkn", le.lEql(70) );
 
  lobj = new XPRBexpr();
  for(i=0;i<4;i++) lobj.add(x[i].mul(objcof[i])); 
  p3.setObj(lobj);               /* Set objective function */ 

/* p3.print(); */                /* Uncomment to print the problem */ 
  p3.exportProb(XPRB.MPS,"expl3");  /* Matrix output in MPS format */
  p3.setSense(XPRB.MAXIM);       /* Change to maximization */
  p3.mipOptimize("");           /* Solve the MIP */
  System.out.println("Objective: " + p3.getObjVal()); /* Get objective value */
  for(i=0;i<4;i++)               /* Print the solution */
   System.out.println(x[i].getName() + ": " + x[i].getSol() + " (rc:" 
     + x[i].getRCost() + "),");
  System.out.println("Dual: " + ctr.getDual() + " slack: " + ctr.getSlack());
                                 /* Print dual & slack values */

  System.out.println("\n<<<<<<<<Variable type changed from BV to UI>>>>>>>>");
  x[1].setType(XPRB.UI);         /* Change variable type */
  System.out.println(x[1].getName() + ": bounds: " + x[1].getLB() +" "+ 
    x[1].getUB() +", type: " + x[1].getType() +", index: " + x[1].getColNum());
  p3.mipOptimize("");           /* Re-solve the MIP */
  System.out.println("Objective: " + p3.getObjVal()); /* Get objective value */

  System.out.println("\n<<<<<<<<Variable bound changed: no matrix regeneration>>>>>>>>");
  x[1].setUB(3);                 /* Change variable bound */
  System.out.println(x[1].getName() + ": bounds: " + x[1].getLB() +" "+ 
    x[1].getUB() +", type: " + x[1].getType() +", index: " + x[1].getColNum());
  p3.mipOptimize("");           /* Re-solve the MIP */
  System.out.println("Objective: " + p3.getObjVal()); /* Get objective value */
  for(i=0;i<4;i++)               /* Print solution values */
   System.out.print(x[i].getName() + ":" + x[i].getSol() + " ");
  
  System.out.println("\n\n<<<<<<<<Variable type changed from UI to PI>>>>>>>>");
  x[1].setType(XPRB.PI);         /* Change variable type */
  x[1].setLim(2);                /* Set the integer limit for 
                                    the partial integer variable */
  x[1].print(); System.out.println();   /* Print current variable definition */
  p3.mipOptimize("");           /* Re-solve the MIP */
  System.out.println("Objective: " + p3.getObjVal()); /* Get objective value */
  for(i=0;i<4;i++)               /* Print the solution */
   System.out.println(x[i].getName() + ": " + x[i].getSol() + " (rc:" 
     + x[i].getRCost() + "),");
  System.out.println("Dual: " + ctr.getDual() + " slack: " + ctr.getSlack());
                                 /* Print dual & slack values */
 }   

    /****Expl 4: a small unbounded problem ****/
 static void expl4()
 {
  XPRBvar[] x;
  int i;

  p4=bcl.newProb("expl4");       /* Create a new problem */
 
                                 /* Define 2 variables in [0,PLUSINFINITY] */
  x = new XPRBvar[2];
  for(i=0;i<2;i++) x[i]=p4.newVar("x_"+i);

                                 /* Create the constraints:
                                    ctr0: 4*x0 + x1 >= 4
                                    ctr1: x0 + x1   >= 3
                                    ctr2: x0 + 2*x1 >= 4 */
  p4.newCtr("c1", x[0].mul(4).add(x[1]).gEql(4) );
  p4.newCtr("c2", x[0].add(x[1])       .gEql(3) );
  p4.newCtr("c3", x[0].add(x[1].mul(2)).gEql(4) );

  p4.setObj( x[0].add(x[1]) );   /* Define and set objective function */ 

  p4.setSense(XPRB.MAXIM);       /* Change to maximization */
  p4.lpOptimize("");             /* Solve the LP */
  System.out.println("Problem status: " + p4.getProbStat() + " LP status: "
    + p4.getLPStat() + " MIP status: " + p4.getMIPStat());
  System.out.println("Objective: "+ p4.getObjVal());  /* Get objective value */
  for(i=0;i<2;i++)               /* Print solution values */
   System.out.print(x[i].getName() + ":" + x[i].getSol() + " ");
  System.out.println();
 }

    /***Expl5: Working with different problems****/
 static void expl5()
 {
  int i;
 
  System.out.println("\n<<<<<<<<Re-solve problem " + p2.getName() + ">>>>>>>>");
  p2.mipOptimize("");            /* Solve the MIP */
  System.out.println("Problem status: " + p2.getProbStat() + " LP status: "
    + p2.getLPStat() + " MIP status: " + p2.getMIPStat());
  System.out.println("Objective: " + p2.getObjVal());  /* Get objective value */
  for(i=0;i<4;i++)               /* Print solution values */
   System.out.print("x_" + i + ":" + p2.getVarByName("x_"+i).getSol());
  
/* In C and C++, here we delete the problem "expl4". With Java, the 
   closest correspondence is to explicitely finalize this problem. */
  System.out.println("\n\n<<<<<<<<Finalize prob4>>>>>>>>");
  p4.print();
  p4.finalize();
  p4=null; 

  System.out.println("\n\n<<<<<<<<Re-solve problem " + p3.getName() + " and print it>>>>>>>>");
  p3.print();                    /* Print the problem def. */
  p3.mipOptimize("");            /* Solve the MIP */
  System.out.println("Problem status: " + p3.getProbStat() + " LP status: "
    + p3.getLPStat() + " MIP status: " + p3.getMIPStat());
  System.out.println("Objective: " + p3.getObjVal()); /* Get objective value */
  for(i=0;i<4;i++)               /* Print solution values */
   System.out.print("x_" + i + ":" + p3.getVarByName("x_"+i).getSol()); 
  System.out.println();
 }
} 

© 2001-2020 Fair Isaac Corporation. All rights reserved. This documentation is the property of Fair Isaac Corporation (“FICO”). Receipt or possession of this documentation does not convey rights to disclose, reproduce, make derivative works, use, or allow others to use it except solely for internal evaluation purposes to determine whether to purchase a license to the software described in this documentation, or as otherwise set forth in a written software license agreement between you and FICO (or a FICO affiliate). Use of this documentation and the software described in it must conform strictly to the foregoing permitted uses, and no other use is permitted.