cycle
cycle |
function cycle(succ:array of cpvar) : cpctr
function cycle(succ:array of cpvar, pred:array of cpvar) : cpctr
function cycle(succ:array of cpvar, dist:cpvar, distmatrix:array(range,range) of integer) : cpctr
function cycle(succ:array of cpvar, pred:array of cpvar, dist:cpvar, distmatrix:array(range,range) of integer) : cpctr
|
succ
|
the list of successors variables
|
|
pred
|
the list of predecessors variables
|
|
dist
|
the accumulated quantity variable
|
|
distmatrix
|
a (nodes × nodes) matrix of integers representing the quantity to add to the accumulated quantity variable when an edge (i,j) belongs to the tour.
|
model "TSP"
uses "kalis"
parameters
S = 14 ! Number of cities to visit
end-parameters
declarations
TC : array(0..3*S) of integer
end-declarations
! TSP DATA
TC :: [
1 , 1647, 9610,
2 , 1647, 9444,
3 , 2009, 9254,
4 , 2239, 9337,
5 , 2523, 9724,
6 , 2200, 9605,
7 , 2047, 9702,
8 , 1720, 9629,
9 , 1630, 9738,
10, 1405, 9812,
11, 1653, 9738,
12, 2152, 9559,
13, 1941, 9713,
14, 2009, 9455]
forward public procedure print_solution
forward public function bestregret(Vars: cpvarlist): integer
forward public function bestneighbor(x: cpvar): integer
setparam("KALIS_DEFAULT_LB", 0)
setparam("KALIS_DEFAULT_UB", S-1)
declarations
CITIES = 0..S-1 ! Set of cities
succ: array(CITIES) of cpvar ! Array of successor variables
prev: array(CITIES) of cpvar ! Array of predecessor variables
end-declarations
setparam("KALIS_DEFAULT_UB", 10000)
declarations
dist_matrix: array(CITIES,CITIES) of integer ! Distance matrix
totaldist: cpvar ! Total distance of the tour
succpred: cpvarlist ! Variable list for branching
end-declarations
! Setting the variable names
forall(p in CITIES) do
setname(succ(p),"succ("+p+")")
setname(prev(p),"prev("+p+")")
end-do
! Add succesors and predecessors to succpred list for branching
forall(p in CITIES) succpred += succ(p)
forall(p in CITIES) succpred += prev(p)
! Build the distance matrix
forall(p1,p2 in CITIES | p1<>p2)
dist_matrix(p1,p2) := round(sqrt((TC(3*p2+1) - TC(3*p1+1)) *
(TC(3*p2+1) - TC(3*p1+1)) + (TC(3*p2+2) - TC(3*p1+2)) *
(TC(3*p2+2) - TC(3*p1+2))))
! Set the name of the distance variable
setname(totaldist, "total_distance")
! Posting the cycle constraint
cycle(succ, prev, totaldist, dist_matrix)
! Print all solutions found
cp_set_solution_callback("print_solution")
! Set the branching strategy
cp_set_branching(assign_and_forbid("bestregret", "bestneighbor",
succpred))
setparam("KALIS_MAX_COMPUTATION_TIME", 5)
! Find the optimal tour
if (cp_minimize(totaldist)) then
if getparam("KALIS_SEARCH_LIMIT")=KALIS_SLIM_BY_TIME then
writeln("Search time limit reached")
else
writeln("Done!")
end-if
end-if
!---------------------------------------------------------------
! **** Solution printing ****
public procedure print_solution
writeln("TOUR LENGTH = ", getsol(totaldist))
thispos:=getsol(succ(0))
nextpos:=getsol(succ(thispos))
write(" Tour: ", thispos)
while (nextpos <> getsol(succ(0))) do
write(" -> ", nextpos)
thispos:=nextpos
nextpos:=getsol(succ(thispos))
end-do
writeln
end-procedure
!---------------------------------------------------------------
! **** Variable choice ****
public function bestregret(Vars: cpvarlist): integer
! Get the number of elements of "Vars"
listsize:= getsize(Vars)
minindex := 0
mindist := 0
! Set on uninstantiated variables
forall(i in 1..listsize) do
if not is_fixed(getvar(Vars,i)) then
if (i <= S) then
bestn := getlb(getvar(Vars,i))
v:=bestn
mval:=dist_matrix(i-1,v)
while (v < getub(getvar(Vars,i))) do
v:=getnext(getvar(Vars,i),v)
if dist_matrix(i-1,v)<=mval then
mval:=dist_matrix(i-1,v)
bestn:=v
end-if
end-do
sbestn := getlb(getvar(Vars,i))
mval2:= 10000000
v:=sbestn
if (dist_matrix(i-1,v)<=mval2 and v <> bestn) then
mval2:=dist_matrix(i-1,v)
sbestn:=v
end-if
while (v < getub(getvar(Vars,i))) do
v:=getnext(getvar(Vars,i),v)
if (dist_matrix(i-1,v)<=mval2 and v <> bestn) then
mval2:=dist_matrix(i-1,v)
sbestn:=v
end-if
end-do
else
bestn := getlb(getvar(Vars,i))
v:=bestn
mval:=dist_matrix(v,i-S-1)
while (v < getub(getvar(Vars,i))) do
v:=getnext(getvar(Vars,i),v)
if dist_matrix(v,i-S-1)<=mval then
mval:=dist_matrix(v,i-S-1)
bestn:=v
end-if
end-do
sbestn := getlb(getvar(Vars,i))
mval2:= 10000000
v:=sbestn
if (dist_matrix(v,i-S-1)<=mval2 and v <> bestn) then
mval2:=dist_matrix(v,i-S-1)
sbestn:=v
end-if
while (v < getub(getvar(Vars,i))) do
v:=getnext(getvar(Vars,i),v)
if (dist_matrix(v,i-S-1)<=mval2 and v <> bestn) then
mval2:=dist_matrix(v,i-S-1)
sbestn:=v
end-if
end-do
end-if
dsize := getsize(getvar(Vars,i))
rank := integer(10000/ dsize +(mval2 - mval))
if (mindist<= rank) then
mindist := rank
minindex := i
end-if
end-if
end-do
returned := minindex
end-function
!---------------------------------------------------------------
! **** Value choice: choose value resulting in smallest distance
public function bestneighbor(x: cpvar): integer
issucc := false
idx := -1
forall (i in CITIES)
if (is_same(succ(i),x)) then
idx:= i
issucc := true
end-if
forall (i in CITIES)
if (is_same(prev(i),x)) then
idx:= i
end-if
if issucc then
returned:= getlb(x)
v:=getlb(x)
mval:=dist_matrix(idx,v)
while (v < getub(x)) do
v:=getnext(x,v)
if dist_matrix(idx,v)<=mval then
mval:=dist_matrix(idx,v)
returned:=v
end-if
end-do
else
returned:= getlb(x)
v:=getlb(x)
mval:=dist_matrix(v,idx)
while (v < getub(x)) do
v:=getnext(x,v)
if dist_matrix(v,idx)<=mval then
mval:=dist_matrix(v,idx)
returned:=v
end-if
end-do
end-if
end-function
end-model
© 2001-2020 Fair Isaac Corporation. All rights reserved. This documentation is the property of Fair Isaac Corporation (“FICO”). Receipt or possession of this documentation does not convey rights to disclose, reproduce, make derivative works, use, or allow others to use it except solely for internal evaluation purposes to determine whether to purchase a license to the software described in this documentation, or as otherwise set forth in a written software license agreement between you and FICO (or a FICO affiliate). Use of this documentation and the software described in it must conform strictly to the foregoing permitted uses, and no other use is permitted.
