generic_nary_constraint
generic_nary_constraint |
function generic_nary_constraint(vars:arrray of cpvar, fctname:string, userparam:integer) : cpctr
function generic_nary_constraint(vars:cpvarlist, fctname:string, userparam:integer) : cpctr
function generic_nary_constraint(vars:arrray of cpvar, fctname:string, propagation: integer, userparam:integer) : cpctr
function generic_nary_constraint(vars:cpvarlist, fctname:string, propagation: integer, userparam:integer) : cpctr
function generic_nary_constraint(vars:set of cpvar, fctname:string, userparam:integer) : cpctr
function generic_nary_constraint(vars:set of cpvar, fctname:string, propagation: integer, userparam:integer) : cpctr
|
vars
|
a set, array, or cpvarlist of decision variables
|
|
fctname
|
name of the function specifying the user-defined constraint, such a function necessarily takes a cpvarlist/cptuple and an integer (the value of
userparam) as arguments and returns a Boolean.
|
|
userparam
|
a user parameter
|
|
propagation
|
the level of propagation to achieve. 0 stands for GAC algorithm, 1 for AC algorithm and 2 for Forward-Checking algorithm
|
model "Euler Knight Moves"
uses "kalis"
parameters
S = 8 ! No. of rows/columns
end-parameters
N:= S * S ! Total number of cells
setparam("KALIS_DEFAULT_LB", 0)
setparam("KALIS_DEFAULT_UB", N-1)
forward public function valid_knight_move(vals: cptuple, s: integer): boolean
declarations
PATH = 1..N ! Cells on the board
pos: array(PATH) of cpvar ! Position p in tour
propagation : integer ! Alg choice: 0, 1, or 2
end-declarations
! Selecting the propagation algorithm for the generic nary constraint
propagation := 0
! Setting names of decision variables
forall(i in PATH) setname(pos(i), "Position"+i)
! Fix the start position
pos(1) = 0
! Each cell is visited once
all_different(pos, KALIS_GEN_ARC_CONSISTENCY)
! The knight's path obeys the chess rules for valid knight moves
forall(i in 1..N-1)
generic_nary_constraint({pos(i), pos(i+1)}, "valid_knight_move",propagation,S)
generic_nary_constraint({pos(N), pos(1)}, "valid_knight_move",propagation,S)
! Setting enumeration parameters
cp_set_branching(probe_assign_var(KALIS_SMALLEST_MIN,
KALIS_MAX_TO_MIN, pos, 14))
! Search for up to NBSOL solutions
solct:= 0
if not cp_find_next_sol then
writeln("No solution")
else
writeln(pos)
end-if
! **** Test whether the move from a to b is admissible ****
public function valid_knight_move(vals: cptuple, s: integer): boolean
declarations
xa,ya,xb,yb,delta_x,delta_y: integer
a,b : integer
end-declarations
! Current position data
a := getelt(vals,1) ! 1 : pos(i)
b := getelt(vals,2) ! 2 : pos(i+1)
xa := a div s
ya := a mod s
xb := b div s
yb := b mod s
delta_x := abs(xa-xb)
delta_y := abs(ya-yb)
returned := (delta_x<=2) and (delta_y<=2) and (delta_x+delta_y=3)
end-function
end-model
© 2001-2020 Fair Isaac Corporation. All rights reserved. This documentation is the property of Fair Isaac Corporation (“FICO”). Receipt or possession of this documentation does not convey rights to disclose, reproduce, make derivative works, use, or allow others to use it except solely for internal evaluation purposes to determine whether to purchase a license to the software described in this documentation, or as otherwise set forth in a written software license agreement between you and FICO (or a FICO affiliate). Use of this documentation and the software described in it must conform strictly to the foregoing permitted uses, and no other use is permitted.
