/********************************************************
BCL Example Problems
====================
file d1wagon2.c
``````````````
Load balancing of train wagons
(second version, using heuristic solution as
start solution for MIP)
(c) 2014 Fair Isaac Corporation
author: L. Bertacco, September 2014
********************************************************/
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "xprb.h"
#include "xprs.h"
#define NBOXES (sizeof(WEIGHT)/sizeof(*WEIGHT)) /* Number of boxes */
#define NWAGONS 3 /* Number of wagons */
/* Box weights */
int WEIGHT[] = { 34, 6, 8, 17, 16, 5, 13, 21, 25, 31, 14, 13, 33, 9, 25, 25 };
int WMAX = 100; /* Weight limit of the wagons */
int HeurSol[NBOXES]; /* Heuristic solution: for each box */
/* specifies in which wagon it is loaded */
/****VARIABLES****/
XPRBvar load[NBOXES][NWAGONS]; /* 1 if box loaded on wagon, 0 otherwise */
XPRBvar maxweight; /* Weight of the heaviest wagon load */
XPRBprob prob;
void XPRS_CC solnotify(XPRSprob my_prob, void* my_object, const char* solname, int status);
void d1w2_model(XPRBprob prob)
{
int b, w;
double sum_weights = 0;
XPRBctr ctr;
/****VARIABLES****/
/* Create load[box,wagon] (binary) */
for (b = 0; b < NBOXES; b++) for(w = 0; w < NWAGONS; w++)
load[b][w] = XPRBnewvar(prob, XPRB_BV, XPRBnewname("load_%d_%d",b+1,w+1), 0, 1);
/* Create maxweight (continuous with lb=ceil((sum(b in BOXES) WEIGHT(b))/NBOXES) */
for (b = 0; b < NBOXES; b++) sum_weights += WEIGHT[b];
maxweight = XPRBnewvar(prob, XPRB_PL, "maxweight", ceil(sum_weights/NBOXES), XPRB_INFINITY);
/****CONSTRAINTS****/
/* Every box into one wagon: forall(b in BOXES) sum(w in WAGONS) load(b,w) = 1 */
for (b = 0; b < NBOXES; b++) {
ctr = XPRBnewctr(prob, NULL, XPRB_E);
for (w = 0; w < NWAGONS; w++) XPRBaddterm(ctr, load[b][w], 1);
XPRBaddterm(ctr, NULL, 1);
}
/* Limit the weight loaded into every wagon: forall(w in WAGONS) sum(b in BOXES) WEIGHT(b)*load(b,w) <= maxweight */
for (w = 0; w < NWAGONS; w++) {
ctr = XPRBnewctr(prob, NULL, XPRB_L);
for (b = 0; b < NBOXES; b++) XPRBaddterm(ctr, load[b][w], WEIGHT[b]);
XPRBaddterm(ctr, maxweight, -1);
}
/****OBJECTIVE****/
ctr = XPRBnewctr(prob, "MaxWeight", XPRB_N);
XPRBaddterm(ctr, maxweight, 1);
XPRBsetobj(prob, ctr);
XPRBsetsense(prob, XPRB_MINIM);
}
void d1w2_solve(XPRBprob prob)
{
int b, w;
int statmip;
XPRBsol sol;
/* Alternative to lower bound on maxweight: adapt the optimizer cutoff value */
/* XPRSsetdblcontrol(XPRBgetXPRSprob(prob), XPRS_MIPADDCUTOFF, -0.99999); */
/* Comment out the following line to enable the optimizer log */
XPRSsetintcontrol(XPRBgetXPRSprob(prob), XPRS_OUTPUTLOG, 0);
/* Create a BCL solution from the heuristic solution we have found */
sol = XPRBnewsol(prob);
/* Set the solution values for all discrete variables that are non-zero */
for (b = 0; b < NBOXES; b++) XPRBsetsolvar(sol, load[b][HeurSol[b]], 1);
/* It is possible, but not necessary, to set values for ALL discrete vars */
/* by uncommenting the following line. In this case, the usersolnotify */
/* callback would return status equal to 2 (instead of 3), as the solution */
/* would be feasible without the need of a local search. */
/* for (b=0; b<NBOXES; b++) for (w=0; w<NWAGONS; w++) XPRBsetsolvar(sol, load[b][w], w==HeurSol[b]); */
XPRBaddmipsol(prob, sol, "heurSol"); /* Send the solution to the optimizer */
XPRBdelsol(sol); /* Free the solution object */
/* Request notification of solution status after processing */
XPRSaddcbusersolnotify(XPRBgetXPRSprob(prob), solnotify, NULL, 0);
/* Parameter settings to make use of loaded solution */
XPRSsetdblcontrol(XPRBgetXPRSprob(prob), XPRS_HEURSEARCHEFFORT, 2);
XPRSsetintcontrol(XPRBgetXPRSprob(prob), XPRS_HEURSEARCHROOTSELECT, 31);
XPRSsetintcontrol(XPRBgetXPRSprob(prob), XPRS_HEURSEARCHTREESELECT, 19);
XPRBmipoptimize(prob,"c"); /* Solve the MIP problem */
statmip = XPRBgetmipstat(prob); /* Get the problem status */
if (statmip == XPRB_MIP_SOLUTION || statmip == XPRB_MIP_OPTIMAL) { /* An integer solution has been found */
printf("Optimal solution:\n Max weight: %g\n", XPRBgetobjval(prob));
for (w = 0; w < NWAGONS; w++) {
int tot_weight = 0;
printf(" %d:", w + 1);
for (b = 0; b < NBOXES; b++) if (XPRBgetsol(load[b][w]) > .5) {
printf(" %d", b+1);
tot_weight += WEIGHT[b];
}
printf(" (total weight: %d)\n", tot_weight);
}
}
}
/***********************************************************************/
/* LPT (Longest processing time) heuristic: */
/* One at a time, place the heaviest unassigned */
/* box onto the wagon with the least load */
int weight_cmp(const int *arg1, const int *arg2) { return WEIGHT[*arg2] - WEIGHT[*arg1]; }
double solve_heur()
{
int b, w, i;
int ORDERW[NBOXES]; /* Box indices sorted in decreasing weight order */
int CurNum[NWAGONS] = { 0 }; /* For each wagon w, this is the number of boxes currently loaded */
int CurWeight[NWAGONS] = { 0 }; /* For each wagon w, this is the current weight, i.e. the sum of weights of loaded boxes */
int Load[NWAGONS][NBOXES] = { 0 }; /* Load[w][i] (for i=0..CurNum[w]-1) contains the box index of the i-th box loaded on wagon w */
double heurobj = 0; /* heuristic solution objective value (max wagon weight) */
/* Copy the box indices into array ORDERW and sort them in decreasing */
/* order of box weights (the sorted indices are returned in array ORDERW) */
for (b = 0; b < NBOXES; b++) ORDERW[b] = b;
qsort(ORDERW, NBOXES, sizeof(*ORDERW), weight_cmp);
/* Distribute the loads to the wagons using the LPT heuristic */
for (b = 0; b < NBOXES; b++) {
int v = 0; /* Find wagon v with the smallest load */
for (w = 0; w < NWAGONS; w++) if (CurWeight[w] <= CurWeight[v]) v = w;
Load[v][CurNum[v]] = ORDERW[b]; /* Add current box to wagon v */
CurNum[v]++; /* Increase the counter of boxes on v */
CurWeight[v] += WEIGHT[ORDERW[b]]; /* Update current weight of the wagon */
}
/* Calculate the solution value */
for (w = 0; w < NWAGONS; w++) if (CurWeight[w]>heurobj) heurobj = CurWeight[w];
/* Solution printing */
printf("Heuristic solution:\n Max weight: %g\n", heurobj);
for (w = 0; w < NWAGONS; w++) {
printf(" %d:", w + 1);
for (i = 0; i < CurNum[w]; i++) printf(" %d", Load[w][i]+1);
printf(" (total weight: %d)\n", CurWeight[w]);
}
/* Save the heuristic solution into the HeurSol array */
for (w = 0; w < NWAGONS; w++) for (i = 0; i < CurNum[w]; i++) HeurSol[Load[w][i]] = w;
return heurobj;
}
/* Callback function reporting loaded solution status */
void XPRS_CC solnotify(XPRSprob my_prob, void* my_object, const char* solname, int status)
{
printf("Optimizer loaded solution %s with status=%d\n", solname, status);
}
/***********************************************************************/
int main(int argc, char **argv)
{
XPRBprob prob = XPRBnewprob("d1wagon2"); /* Initialize a new problem in BCL */
if (solve_heur() <= WMAX) {
printf("Heuristic solution fits capacity limits\n");
exit(0);
}
d1w2_model(prob); /* Model the problem */
d1w2_solve(prob); /* Solve the problem */
return 0;
}
|