(!*********************************************************************
Mosel NL examples
=================
file grasp.mos
``````````````
Find the smallest amount of normal force required
to "grasp" an object given a set of possible grasping points.
SOCP formulation.
Based on grasp.mod, gasp_exp.mod, grasp_nonconvex.mod
Source: http://www.orfe.princeton.edu/~rvdb/ampl/nlmodels/grasp/
Reference:
"Applications of Second-Order Cone Programming",
M.S. Lobo, L. Vandenberghe, S. Boyd, and H. Lebret, 1998
(c) 2013 Fair Issac Corporation
author: S. Heipcke, Nov. 2005, rev. Sep. 2013
*********************************************************************!)
model "grasping (NL)"
uses "mmxnlp"
parameters
N = 6 ! Number of lifting points
MU = 0.3 ! Friction coefficient
end-parameters
declarations
RN = 1..N ! Set of lifting points
DIM = 1..3 ! Set of dimensions
P: array(RN,DIM) of real ! Contact point
GRAD_NORM: array(RN) of real ! Auxiliary term
V: array(RN,DIM) of real ! Unit normal vector at contact point
f_ext: array(DIM) of real ! Externally applied force
torq_ext: array(DIM) of real ! Externally applied torque
force: array(RN,DIM) of mpvar ! Contact force at point
nforce: array(RN) of mpvar ! Normal force at point
munforce: array(RN) of mpvar ! Aux. var for SOCP reformulation
tforce: array(RN,DIM) of mpvar ! Tangential force at point
torq: array(RN,DIM) of mpvar ! Torque at point
pressure: mpvar ! Objective variable, maximum of nforce
Friction: array(RN) of nlctr ! Friction relation
end-declarations
! Defining bounds and start values
pressure is_free
forall (d in DIM, i in RN) do
force(i,d) <= 10
tforce(i,d) <= 2
torq(i,d) <= 10
force(i,d) >= -10
tforce(i,d) >= -10
torq(i,d) >= -10
setinitval(force(i,d), 1.0)
end-do
forall (i in RN) nforce(i) >= 0
f_ext :: [0.0, 0.0, -1.0]
forall(d in DIM) torq_ext(d) := 0.0
! Calculate parameters
forall(i in RN) do
! P(i) is a contact point on a parabolic "nose cone" to be lifted
P(i,1) := 0.3 + cos(2*M_PI*i/N)
P(i,2) := sin(2*M_PI*i/N)
P(i,3) := P(i,1)^2 + P(i,2)^2
GRAD_NORM(i) := sqrt( (2*P(i,1))^2 + (2*P(i,2))^2 + 1 )
! V(i) is the unit normal vector at contact point P(i)
V(i,1) := -2*P(i,1)/GRAD_NORM(i)
V(i,2) := -2*P(i,2)/GRAD_NORM(i)
V(i,3) := 1/GRAD_NORM(i)
end-do
! Constraints:
forall(i in RN) do
! Normal force at point P(i)
nfDef(i):= nforce(i) = sum(d in DIM) V(i,d)*force(i,d)
! Tangential force at point P(i)
forall(d in DIM)
tfDef(i,d):= tforce(i,d) = force(i,d) - V(i,d)*nforce(i)
! Torq about (0,0,0) at point P(i)
torq1Def(i):= torq(i,1) = P(i,2)*force(i,3) - force(i,2)*P(i,3)
torq2Def(i):= torq(i,2) = P(i,3)*force(i,1) - force(i,3)*P(i,1)
torq3Def(i):= torq(i,3) = P(i,1)*force(i,2) - force(i,1)*P(i,2)
! Objective function definition
t_bnds(i) := nforce(i) <= pressure
! Definition of friction
munforce(i)=MU*nforce(i)
Friction(i):= sum(d in DIM) tforce(i,d)^2 <= munforce(i)^2
end-do
! Force balances
forall(d in DIM) f_Balance(d) := sum(i in RN) force(i,d) = -f_ext(d)
forall(d in DIM) t_Balance(d) := sum(i in RN) torq(i,d) = -torq_ext(d)
! Solving the problem
setparam("xnlp_verbose", true)
minimize(pressure)
! Solution display
setparam("REALFMT", "%7.4f")
forall(i in RN) do
write("force(",i,") = ")
forall(d in DIM) write(getsol(force(i,d)), " ")
write("\ntorque(",i,") = ")
forall(d in DIM) write(getsol(torq(i,d)), " ")
writeln("\nnormal force(",i,") = ", getsol(nforce(i)))
write("tangential force(",i,")= ")
forall(d in DIM) write(getsol(tforce(i,d)), " ")
writeln
end-do
writeln("\n Pressure = ", getsol(pressure));
end-model
|
(!*********************************************************************
Mosel NL examples
=================
file grasp_ive.mos
``````````````````
Find the smallest amount of normal force required
to "grasp" an object given a set of possible grasping points.
SOCP formulation.
Based on grasp.mod, gasp_exp.mod, grasp_nonconvex.mod
Source: http://www.orfe.princeton.edu/~rvdb/ampl/nlmodels/grasp/
Reference:
"Applications of Second-Order Cone Programming",
M.S. Lobo, L. Vandenberghe, S. Boyd, and H. Lebret, 1998
- Graphical representation of results -
(c) 2013 Fair Issac Corporation
author: S. Heipcke, Nov. 2005, rev. Sep. 2017
*********************************************************************!)
model "grasping (NL)"
uses "mmxnlp", "mmsvg"
parameters
N = 6 ! Number of lifting points
MU = 0.3 ! Friction coefficient
end-parameters
declarations
RN = 1..N ! Set of lifting points
DIM = 1..3 ! Set of dimensions
P: array(RN,DIM) of real ! Contact point
GRAD_NORM: array(RN) of real ! Auxiliary term
V: array(RN,DIM) of real ! Unit normal vector at contact point
f_ext: array(DIM) of real ! Externally applied force
torq_ext: array(DIM) of real ! Externally applied torque
force: array(RN,DIM) of mpvar ! Contact force at point
nforce: array(RN) of mpvar ! Normal force at point
munforce: array(RN) of mpvar ! Aux. var for SOCP reformulation
tforce: array(RN,DIM) of mpvar ! Tangential force at point
torq: array(RN,DIM) of mpvar ! Torque at point
pressure: mpvar ! Objective variable, maximum of nforce
Friction: array(RN) of nlctr ! Friction relation
end-declarations
! Defining bounds and start values
pressure is_free
forall (d in DIM, i in RN) do
force(i,d) <= 10
tforce(i,d) <= 2
torq(i,d) <= 10
force(i,d) >= -10
tforce(i,d) >= -10
torq(i,d) >= -10
setinitval(force(i,d), 1.0)
end-do
forall (i in RN) nforce(i) >= 0
f_ext :: [0.0, 0.0, -1.0]
forall(d in DIM) torq_ext(d) := 0.0
! Calculate parameters
forall(i in RN) do
! P(i) is a contact point on a parabolic "nose cone" to be lifted
P(i,1) := 0.3 + cos(2*M_PI*i/N)
P(i,2) := sin(2*M_PI*i/N)
P(i,3) := P(i,1)^2 + P(i,2)^2
GRAD_NORM(i) := sqrt( (2*P(i,1))^2 + (2*P(i,2))^2 + 1 )
! V(i) is the unit normal vector at contact point P(i)
V(i,1) := -2*P(i,1)/GRAD_NORM(i)
V(i,2) := -2*P(i,2)/GRAD_NORM(i)
V(i,3) := 1/GRAD_NORM(i)
end-do
! Constraints:
forall(i in RN) do
! Normal force at point P(i)
nfDef(i):= nforce(i) = sum(d in DIM) V(i,d)*force(i,d)
! Tangential force at point P(i)
forall(d in DIM)
tfDef(i,d):= tforce(i,d) = force(i,d) - V(i,d)*nforce(i)
! Torq about (0,0,0) at point P(i)
torq1Def(i):= torq(i,1) = P(i,2)*force(i,3) - force(i,2)*P(i,3)
torq2Def(i):= torq(i,2) = P(i,3)*force(i,1) - force(i,3)*P(i,1)
torq3Def(i):= torq(i,3) = P(i,1)*force(i,2) - force(i,1)*P(i,2)
! Objective function definition
t_bnds(i) := nforce(i) <= pressure
! Definition of friction
munforce(i)=MU*nforce(i)
Friction(i):= sum(d in DIM) tforce(i,d)^2 <= munforce(i)^2
end-do
! Force balances
forall(d in DIM) f_Balance(d) := sum(i in RN) force(i,d) = -f_ext(d)
forall(d in DIM) t_Balance(d) := sum(i in RN) torq(i,d) = -torq_ext(d)
! Solving the problem
setparam("xnlp_verbose", true)
minimize(pressure)
! Solution display
setparam("REALFMT", "%7.4f")
forall(i in RN) do
write("force(",i,") = ")
forall(d in DIM) write(getsol(force(i,d)), " ")
write("\ntorque(",i,") = ")
forall(d in DIM) write(getsol(torq(i,d)), " ")
writeln("\nnormal force(",i,") = ", getsol(nforce(i)))
write("tangential force(",i,")= ")
forall(d in DIM) write(getsol(tforce(i,d)), " ")
writeln
end-do
writeln("\n Pressure = ", getsol(pressure));
!**************** Graphical representation of results ****************
forall(i in 0..12) pcol(i):= svgcolor(200-10*i,200-10*i,200-10*i)
svgaddgroup("plot", "Surface", SVG_GRAY)
svgsetstyle(SVG_OPACITY, 0.35)
svgsetstyle(SVG_FILL, SVG_CURRENT)
svgaddgroup("plotC", "Cone", svgcolor(75,75,75))
svgsetstyle(SVG_OPACITY, 0.5)
svgaddgroup("plotP", "Lift points", svgcolor(25,25,150))
svgsetstyle(SVG_STROKEDASH, "1,1")
svgaddgroup("plotF", "Force", svgcolor(200,25,25))
svgsetstyle(SVG_STROKEWIDTH, 2)
svgaddgroup("plotD", "Lifting direction", svgcolor(25,150,25))
svgsetstyle(SVG_STROKEWIDTH, 2)
EPS:=0.0001
FAC:=2.5
FFAC:=2.5
! Lifting points and forces
forall(i in RN) do
fz:=P(i,1)^2+P(i,2)^2
fz2:=(P(i,1)+if(abs(force(i,1).sol)>EPS,force(i,1).sol,0))^2+
(P(i,2)+if(abs(force(i,2).sol)>EPS,force(i,2).sol,0))^2
svgaddpoint("plotP",P(i,1)+fz/FAC,P(i,2)+fz/FAC)
svgaddarrow("plotF",P(i,1)+fz/FAC,P(i,2)+fz/FAC,
P(i,1)+FFAC*(if(abs(force(i,1).sol)>EPS,force(i,1).sol,0))+fz2/FAC,
P(i,2)+FFAC*(if(abs(force(i,2).sol)>EPS,force(i,2).sol,0))+fz2/FAC)
end-do
! Lifting direction
fz:=(0.3)^2
svgaddpoint("plotD",1+0.3+fz/FAC,fz/FAC)
svgaddarrow("plotD",0.3+fz/FAC,fz/FAC,
0.3-FFAC*f_ext(1)-f_ext(3)/FAC, -FFAC*f_ext(2)-f_ext(3)/FAC)
! Circle on which are located the lifting points
M:=40
forall(i in 1..M) do
fz:=(0.3 + cos(2*M_PI*i/M))^2 + (sin(2*M_PI*i/M))^2
fx:=0.3 + cos(2*M_PI*i/M) + fz/FAC; fy:=sin(2*M_PI*i/M)+fz/FAC
fz2:=(0.3 + cos(2*M_PI*(i+1)/M))^2 + (sin(2*M_PI*(i+1)/M))^2
fx2:=0.3 + cos(2*M_PI*(i+1)/M) + fz2/FAC; fy2:=sin(2*M_PI*(i+1)/M)+ fz2/FAC
svgaddline("plotP",fx,fy,fx2,fy2)
end-do
! Surface of the cone
forall(y in union(i in -12..12) {i/5})
forall(x in union(i in -12..12) {i/5}) do
fz:=(x-0.3)^2+y^2
fz2:=(x-0.3+0.2)^2+y^2
fz3:=(x-0.3)^2+(y+0.2)^2
fz4:=(x-0.3+0.2)^2+(y+0.2)^2
svgaddpolygon("plot", [x+fz/5,y+fz/5,(x+0.2)+fz2/5,y+fz2/5,
(x+0.2)+fz4/5,y+0.2+fz4/5,x+fz3/5,y+0.2+fz3/5])
svgsetstyle(svggetlastobj, SVG_STROKE, pcol(round(abs(x)*5)) )
svgsetstyle(svggetlastobj, SVG_FILL, pcol(round(abs(x)*5)) )
end-do
! Grid representing the cone
forall(y in union(i in -12..12) {i/5})
forall(x in union(i in -12..12) {i/5}) do
fz:=(x-0.3)^2+y^2
fz2:=(x-0.3+0.2)^2+y^2
svgaddline("plotC", x+fz/5,y+fz/5,(x+0.2)+fz2/5,y+fz2/5)
end-do
(! forall(x in union(i in -12..12) {i/5})
forall(y in union(i in -12..12) {i/5}) do
fz:=(x-0.3)^2+y^2
fz2:=(x-0.3)^2+(y+0.2)^2
svgaddline("plotC", x+fz/5,y+fz/5,x+fz2/5,y+0.2+fz2/5)
end-do
!)
! Scale size of the displayed graph
svgsetgraphscale(100)
svgsetgraphlabels("x","y")
svgsave("grasp.svg")
svgrefresh
svgwaitclose("Close browser window to terminate model execution.", 1)
end-model
|