MIP model 2: imposing a minimum investment in each share
To formulate the second MIP model, we start again with the LP model from Chapters 2 and 10. The new constraint we wish to formulate is `if a share is bought, at least a minimum amount 10% of the budget is spent on the share.' Instead of simply constraining every variable fracs to take a value between 0 and 0.3, it now must either lie in the interval between 0.1 and 0.3 or take the value 0. This type of variable is known as semi-continuous variable. In the new model, we replace the bounds on the variables fracs by the following constraint:
Implementation with BCL
The following program implements the MIP model 2. The semi-continuous variables are defined by the type XPRB_SC. By default, BCL assumes a continuous limit of 1, se we need to set this value to 0.1 with the method setLim.
A similar type is available for integer variables that take either the value 0 or an integer value between a given limit and their upper bound (so-called semi-continuous integers): XPRB_SI. A third composite type is a partial integer which takes integer values from its lower bound to a given limit value and is continuous beyond this value (marked by XPRB_PI).
#include <iostream> #include "xprb_cpp.h" using namespace std; using namespace ::dashoptimization; #define NSHARES 10 // Number of shares #define NRISK 5 // Number of high-risk shares #define NNA 4 // Number of North-American shares double RET[] = {5,17,26,12,8,9,7,6,31,21}; // Estimated return in investment int RISK[] = {1,2,3,8,9}; // High-risk values among shares int NA[] = {0,1,2,3}; // Shares issued in N.-America int main(int argc, char **argv) { int s; XPRBprob p("FolioSC"); // Initialize a new problem in BCL XPRBexpr Risk,Na,Return,Cap; XPRBvar frac[NSHARES]; // Fraction of capital used per share // Create the decision variables for(s=0;s<NSHARES;s++) { frac[s] = p.newVar("frac", XPRB_SC, 0, 0.3); frac[s].setLim(0.1); } // Objective: total return for(s=0;s<NSHARES;s++) Return += RET[s]*frac[s]; p.setObj(Return); // Set the objective function // Limit the percentage of high-risk values for(s=0;s<NRISK;s++) Risk += frac[RISK[s]]; p.newCtr(Risk <= 1.0/3); // Minimum amount of North-American values for(s=0;s<NNA;s++) Na += frac[NA[s]]; p.newCtr(Na >= 0.5); // Spend all the capital for(s=0;s<NSHARES;s++) Cap += frac[s]; p.newCtr(Cap == 1); // Solve the problem p.setSense(XPRB_MAXIM); p.mipOptimize(""); // Solution printing cout << "Total return: " << p.getObjVal() << endl; for(s=0;s<NSHARES;s++) cout << s << ": " << frac[s].getSol()*100 << "%" << endl; return 0; }
When executing this program we obtain the following output (leaving out the part printed by the Optimizer):
Total return: 14.0333 0: 30% 1: 0% 2: 20% 3: 0% 4: 10% 5: 26.6667% 6: 0% 7: 0% 8: 13.3333% 9: 0%
Now five securities are chosen for the portfolio, each forming at least 10% and at most 30% of the total investment. Due to the additional constraint, the optimal MIP solution value is again lower than the initial LP solution value.