Results
For the example provided in vpn_data.dat, which describes a network of six nodes and 18 arcs, we obtain a design of total cost 566. Table Optimal arc capacity reports the number of units of capacity to be installed on each arc, while Table Optimal routes describes the path followed by each demand from source to destination.
i/j | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
1 | – | 2 | 2 | 13 | – | – |
2 | 5 | – | 0 | – | 0 | – |
3 | 5 | 0 | – | – | 0 | – |
4 | 10 | – | – | – | 4 | 4 |
5 | – | 0 | 0 | 4 | – | 0 |
6 | – | – | – | 7 | 0 | – |
Source | Destination | Path | Source | Destination | Path |
---|---|---|---|---|---|
1 | 2 | 1→2 | 4 | 1 | 4→1 |
1 | 3 | 1→3 | 4 | 2 | 4→1→2 |
1 | 4 | 1→4 | 4 | 3 | 4→1→3 |
1 | 5 | 1→4→5 | 4 | 5 | 4→5 |
1 | 6 | 1→4→6 | 4 | 6 | 4→6 |
2 | 1 | 2→1 | 5 | 1 | 5→4→1 |
2 | 3 | 2→1→3 | 5 | 2 | 5→4→1→2 |
2 | 4 | 2→1→4 | 5 | 3 | 5→4→1→3 |
2 | 5 | 2→1→4→5 | 5 | 4 | 5→4 |
2 | 6 | 2→1→4→6 | 5 | 6 | 5→4→6 |
3 | 1 | 3→1 | 6 | 1 | 6→4→1 |
3 | 2 | 3→1→2 | 6 | 2 | 6→4→1→2 |
3 | 4 | 3→1→4 | 6 | 3 | 6→4→1→3 |
3 | 5 | 3→1→4→5 | 6 | 4 | 6→4 |
3 | 6 | 3→1→4→6 | 6 | 5 | 6→4→5 |
The last part of the output shows, for each arc, the demands for which the uncertain values are non-zero in the worst case. Note that arcs such as (2,3) do not admit any nonzero demand simply because they are not used by the solution—the opponent has no incentive to increase the demand on such arcs.
Active demands at each arc: Arc (1,2): 1-->2 (34); Arc (1,3): 1-->3 (35); Arc (1,4): 1-->4 (101); 1-->5 (4); 2-->6 (67); 3-->5 (74); 3-->6 (8); Arc (2,1): 2-->1 (95); Arc (3,1): 3-->1 (82); Arc (4,1): 4-->1 (102); 5-->1 (18); 6-->2 (34); 6-->3 (35); Arc (4,5): 1-->5 (78); Arc (4,6): 1-->6 (75); Arc (5,4): 5-->1 (76); Arc (6,4): 6-->1 (106); 6-->2 (34);