generic_nary_constraint
generic_nary_constraint |
Purpose
This constraint can be used to propagate a user-defined constraint over n variables (its propagation is based on the GAC2001 algorithm (cf.
[Bes01]).
Synopsis
function generic_nary_constraint(vars:arrray of cpvar, fctname:string, userparam:integer) : cpctr
function generic_nary_constraint(vars:cpvarlist, fctname:string, userparam:integer) : cpctr
function generic_nary_constraint(vars:arrray of cpvar, fctname:string, propagation: integer, userparam:integer) : cpctr
function generic_nary_constraint(vars:cpvarlist, fctname:string, propagation: integer, userparam:integer) : cpctr
function generic_nary_constraint(vars:set of cpvar, fctname:string, userparam:integer) : cpctr
function generic_nary_constraint(vars:set of cpvar, fctname:string, propagation: integer, userparam:integer) : cpctr
Arguments
|
vars
|
a set, array, or cpvarlist of decision variables
|
|
fctname
|
name of the function specifying the user-defined constraint, such a function necessarily takes a cpvarlist/cptuple and an integer (the value of
userparam) as arguments and returns a Boolean.
|
|
userparam
|
a user parameter
|
|
propagation
|
the level of propagation to achieve. 0 stands for GAC algorithm, 1 for AC algorithm and 2 for Forward-Checking algorithm
|
Return value
An n-ary constraint over a set of variables
Example
The following example shows how to use the generic_nary_constraint constraint to solve the classical Euler Knight Tour problem:
model "Euler Knight Moves"
uses "kalis"
parameters
S = 8 ! No. of rows/columns
end-parameters
N:= S * S ! Total number of cells
setparam("KALIS_DEFAULT_LB", 0)
setparam("KALIS_DEFAULT_UB", N-1)
forward public function valid_knight_move(vals: cptuple, s: integer): boolean
declarations
PATH = 1..N ! Cells on the board
pos: array(PATH) of cpvar ! Position p in tour
propagation : integer ! Alg choice: 0, 1, or 2
end-declarations
! Selecting the propagation algorithm for the generic nary constraint
propagation := 0
! Setting names of decision variables
forall(i in PATH) setname(pos(i), "Position"+i)
! Fix the start position
pos(1) = 0
! Each cell is visited once
all_different(pos, KALIS_GEN_ARC_CONSISTENCY)
! The knight's path obeys the chess rules for valid knight moves
forall(i in 1..N-1)
generic_nary_constraint({pos(i), pos(i+1)}, "valid_knight_move",propagation,S)
generic_nary_constraint({pos(N), pos(1)}, "valid_knight_move",propagation,S)
! Setting enumeration parameters
cp_set_branching(probe_assign_var(KALIS_SMALLEST_MIN,
KALIS_MAX_TO_MIN, pos, 14))
! Search for up to NBSOL solutions
solct:= 0
if not cp_find_next_sol then
writeln("No solution")
else
writeln(pos)
end-if
! **** Test whether the move from a to b is admissible ****
public function valid_knight_move(vals: cptuple, s: integer): boolean
declarations
xa,ya,xb,yb,delta_x,delta_y: integer
a,b : integer
end-declarations
! Current position data
a := getelt(vals,1) ! 1 : pos(i)
b := getelt(vals,2) ! 2 : pos(i+1)
xa := a div s
ya := a mod s
xb := b div s
yb := b mod s
delta_x := abs(xa-xb)
delta_y := abs(ya-yb)
returned := (delta_x<=2) and (delta_y<=2) and (delta_x+delta_y=3)
end-function
end-model
