Initializing help system before first use

Maximizing the area of a polygon using tokens based input - using a 'multimapdelta' userfunction


Type: Programming
Rating: 3 (intermediate)
Description: Demonstrates how to solve a nonlinear problem in C#
File(s): Polygon_multimapdelta.cs

Polygon_multimapdelta.cs
/***********************************************************************
 * Xpress Optimizer Examples
 * =========================
 *
 *  Polygon_multimapdelta.cs
 *`````````````````````   
 *
 *  (c) 2017 Fair Isaac Corporation
 *
 *
 * Polygon example: maximise the area of an N sided polygon 
 * 
 * *** Demonstrating using a multi map (R^k->R^l) userfunction calculating its own derivatives ***
 * 
 * Variables:
 * 
 *  rho   : 0..N-1   ! Distance of vertex from the base point 
 *  theta : 0..N-1   ! Angle from x-axis
 * 
 * Objective:
 *   (sum (i in 1..N-2) (rho(i)*rho(i-1)*sin(theta(i)-theta(i-1)))) * 0.5
 * 
 * Constraints:
 *   Vertices in increasing degree order:
 *      theta(i) >= theta(i-1) +.01  : i = 1..N-2
 *   Boundary conditions:
 *      theta(N-1) <= Pi
 *      0.1 <= rho(i) <= 1   : i = 0..N-2
 *   Third side of all triangles <= 1
 *      rho(i)^2 + rho(j)^2 - rho(i)*rho(j)*2*cos(theta(j)-theta(i)) <= 1    : i in 0..N-3, j in i..N-2
***********************************************************************/

using System;
using System.IO;
using Optimizer;
using XSLPdnet;

namespace XSLPExamples
{
  class XSLPExample
  {

    // userfunction of type "multimapdelta", implementing (x0,x1) -> (sin(x0-x1),cos(x0-x1)) alongside its partials
    public int myTrigonometrics(double[] x, double[] deltas, double[] results)
    {
      int nInput = 2;

      /*
       * The order of return values for a multimapdelta function is as follows:
       * 
       * Assuming f:R^k->R^l, there will be a total of (k+1)*l return values, loaded to the results array as
       *   f1(x), diff(f1(x), x1), diff(f1(x), x2) ... diff(f1(x), xk)
       *   f2(x), diff(f2(x), x1), diff(f2(x), x2) ... diff(f1(x), xk)
       *   ...
       *   fl(x), diff(fl(x), x1), diff(fl(x), x2) ... diff(fl(x), xk)
       */
      results[0] = Math.Sin(x[0] - x[1]);
      results[nInput+1] = Math.Cos(x[0] - x[1]);

      if (deltas != null) // Delta may be used as a suggestion for a finite difference step size
                          // however it also indicates if a partial is requested, saving on effort in case only an evaluation is needed 
      {
        if (deltas[0] != 0.0)
        {
          results[1+0] = Math.Cos(x[0] - x[1]);
          results[nInput + 1 + 1 + 0] = -Math.Sin(x[0] - x[1]);
        }
        if (deltas[1] != 0.0)
        {
          results[1+1] = -Math.Cos(x[0] - x[1]);
          results[nInput + 1 + 1 + 1] = Math.Sin(x[0] - x[1]);
        }
      }
      return (0);
    }

    public void RunExp1()
    {
      /* Example 1 loads a simple problem, and setups the SLP coefficient using a string. */
      XPRS.Init("");
      try
      {
        XSLP sProb = new XSLP();
        try
        {

          // Tell Optimizer to call OptimizerMsg whenever a message is output
          sProb.XPRS.MessageCallbacks += new MessageCallback(this.OptimizerMsg);

          System.Console.WriteLine("####################");
          System.Console.WriteLine("# Polygon example  #");
          System.Console.WriteLine("####################");
          System.Console.WriteLine(sProb.getBanner());

          // Number of side of the Polygon
          int nSide = 5;

          /* Create rows */
          int nRow = nSide - 2 + (nSide - 1) * (nSide - 2) / 2 + 1;
          double[] RHS = new double[nRow];
          for (int i = 0; i < nRow; i++) RHS[i] = 0;

          char[] RowType = new char[nRow + 1];
          string[] RowNames = new string[nRow];
          nRow = 0;

          // Objective constraint
          RowType[nRow] = 'E'; /* OBJEQ */
          RowNames[nRow] = "OBJEQ";
          nRow++;

          // Vertices in increasing degree order
          for (int i = 1; i < nSide - 1; i++)
          {
            RowType[nRow] = 'G'; /* T2T1 .. T4T3 */
            RowNames[nRow] = "T" + (i + 1) + "T" + i;
            nRow++;
            RHS[i] = 0.001;
          }

          // Third side of all triangles <= 1
          for (int i = 1; i < nSide - 1; i++)
          {
            for (int j = i + 1; j < nSide; j++)
            {
              RowType[nRow] = 'L';
              RHS[nRow] = 1.0;
              RowNames[nRow] = "V" + i + "V" + j;
              nRow++;
            }
          }
          RowType[nRow] = '\0';

          /* Columns and linear coefficients*/
          int nCol = (nSide - 1) * 2 + 2;
          int nElement = 0;
          double[] OBJ = new double[nCol];
          double[] Lower = new double[nCol];
          double[] Upper = new double[nCol];
          for (int i = 0; i < nCol; i++)
          {
            OBJ[i] = 0;           /* objective function */
            Lower[i] = 0;         /* lower bound normally zero */
            Upper[i] = XPRS.PLUSINFINITY; /* upper bound infinity */
          }

          // Arrays to load linear coefficients
          int[] ColStart = new int[nRow + 1];
          double[] Element = new double[10 * nCol];
          int[] RowIndex = new int[10 * nCol];
          string[] ColNames = new string[nCol];

          /* OBJX */
          nCol = 0;
          ColStart[nCol] = nElement;
          OBJ[nCol] = 1.0;
          ColNames[nCol] = "OBJX";
          Lower[nCol++] = XPRS.MINUSINFINITY; /* free column */
          Element[nElement] = -1.0;
          RowIndex[nElement++] = 0;

          /* THETA1 - THETA 4 */
          int iRow = 0;
          for (int i = 1; i < nSide; i++)
          {
            ColNames[nCol] = "THETA" + i;
            ColStart[nCol++] = nElement;
            if (i < nSide - 1)
            {
              Element[nElement] = -1;
              RowIndex[nElement++] = iRow + 1;
            }
            if (i > 1)
            {
              Element[nElement] = 1;
              RowIndex[nElement++] = iRow;
            }
            iRow++;
          }

          Upper[nCol - 1] = 3.1415926;

          /* Rho's */
          for (int i = 1; i < nSide; i++)
          {
            Lower[nCol] = 0.01;   /* lower bound */
            Upper[nCol] = 1;
            ColNames[nCol] = "RHO" + i;
            ColStart[nCol++] = nElement;
          }
          ColStart[nCol] = nElement;

          sProb.XPRS.LoadLP("Polygon", nCol, nRow, RowType, RHS, null, OBJ, ColStart, null, RowIndex, Element, Lower, Upper);

          sProb.XPRS.AddNames(1, RowNames, 0, nRow - 1);
          sProb.XPRS.AddNames(2, ColNames, 0, nCol - 1);

          /* Add the user function*/
          sProb.AddUserFunction("myTrigonometrics", 2 /* #inputs arguments */, 2 /* #output arguments*/, 0, myTrigonometrics);

          /* Build up nonlinear coefficients */

          /* Area */
          string CoefBuffer = "0.5 * ( ";
          for (int i = 1; i < nSide - 1; i++)
          {
            if (i > 1)
            {
              CoefBuffer += " + ";
            }
            // Expression using userfunction "myTrigonometrics" in place of the builtin sine function
            CoefBuffer += string.Format("RHO{0} * RHO{1} * myTrigonometrics ( THETA{0} , THETA{1} : 1 )", i + 1, i);
          }
          CoefBuffer += " )";
          sProb.ChgStringFormula(0, CoefBuffer);

          /* Distances */
          for (int i = 1; i < nSide - 1; i++)
          {
            for (int j = i + 1; j < nSide; j++)
            {
              // Expression using userfunction "myTrigonometrics" in place of the builtin cosine function
              CoefBuffer = string.Format("RHO{0} ^ 2 + RHO{1} ^ 2 - 2 * RHO{0} * RHO{1} * myTrigonometrics ( THETA{0} , THETA{1} : 2 )", j, i);
              sProb.ChgStringFormula(iRow, CoefBuffer);
              iRow++;
            }
          }

          sProb.SetIntControl(XSLPconst.JACOBIAN, 2);  // Note: multmapdelta functions should use symbolic derivatives
          sProb.Maxim("");
        }
        finally
        {
          /* Cleanup */
          sProb.destroyProb();          
        }
      }
      finally
      {
        XPRS.Free();
      }
    }

    public void OptimizerMsg(XPRSprob prob, object data, string message, int len, int msglvl)
    {
      if (message != null)
      {
        Console.WriteLine(message);
      }
    }


    public static void Main(string[] args)
    {
      XSLPExample e = new XSLPExample();
      e.RunExp1();
      Console.ReadLine();
    }
  }
}


© 2001-2021 Fair Isaac Corporation. All rights reserved. This documentation is the property of Fair Isaac Corporation (“FICO”). Receipt or possession of this documentation does not convey rights to disclose, reproduce, make derivative works, use, or allow others to use it except solely for internal evaluation purposes to determine whether to purchase a license to the software described in this documentation, or as otherwise set forth in a written software license agreement between you and FICO (or a FICO affiliate). Use of this documentation and the software described in it must conform strictly to the foregoing permitted uses, and no other use is permitted.