cycle
function cycle(succ:array of cpvar) : cpctr
 function cycle(succ:array of cpvar, pred:array of cpvar) : cpctr
 function cycle(succ:array of cpvar, dist:cpvar, distmatrix:array(range,range) of integer) : cpctr
 function cycle(succ:array of cpvar, pred:array of cpvar, dist:cpvar, distmatrix:array(range,range) of integer) : cpctr
 | 
     succ 
     | 
     the list of successors variables
     | 
| 
     pred 
     | 
     the list of predecessors variables
     | 
| 
     dist 
     | 
     the accumulated quantity variable
     | 
| 
     distmatrix 
     | 
     a (nodes × nodes) matrix of integers representing the quantity to add to the accumulated quantity variable when an edge (i,j) belongs to the tour.
     | 
model "TSP"
 uses "kalis"
 parameters
  S = 14  ! Number of cities to visit
 end-parameters
 declarations
  TC : array(0..3*S) of integer
 end-declarations
 ! TSP DATA
 TC :: [
  1 , 1647,  9610,
  2 , 1647,  9444,
  3 , 2009,  9254,
  4 , 2239,  9337,
  5 , 2523,  9724,
  6 , 2200,  9605,
  7 , 2047,  9702,
  8 , 1720,  9629,
  9 , 1630,  9738,
  10, 1405,  9812,
  11, 1653,  9738,
  12, 2152,  9559,
  13, 1941,  9713,
  14, 2009,  9455]
 forward public procedure print_solution
 forward public function bestregret(Vars: cpvarlist): integer
 forward public function bestneighbor(x: cpvar): integer
 setparam("KALIS_DEFAULT_LB", 0)
 setparam("KALIS_DEFAULT_UB", S-1)
 declarations
  CITIES = 0..S-1                  ! Set of cities
  succ: array(CITIES) of cpvar     ! Array of successor variables
  prev: array(CITIES) of cpvar     ! Array of predecessor variables
 end-declarations
 setparam("KALIS_DEFAULT_UB", 10000)
 declarations
  dist_matrix: array(CITIES,CITIES) of integer  ! Distance matrix
  totaldist: cpvar                 ! Total distance of the tour
  succpred: cpvarlist              ! Variable list for branching
 end-declarations
 ! Setting the variable names
 forall(p in CITIES) do
  setname(succ(p),"succ("+p+")")
  setname(prev(p),"prev("+p+")")
 end-do
 ! Add succesors and predecessors to succpred list for branching
 forall(p in CITIES) succpred += succ(p)
 forall(p in CITIES) succpred += prev(p)
 ! Build the distance matrix
 forall(p1,p2 in CITIES | p1<>p2)
   dist_matrix(p1,p2) :=  round(sqrt((TC(3*p2+1) - TC(3*p1+1)) *
    (TC(3*p2+1) - TC(3*p1+1)) + (TC(3*p2+2) - TC(3*p1+2)) *
    (TC(3*p2+2) - TC(3*p1+2))))
 ! Set the name of the distance variable
 setname(totaldist, "total_distance")
 ! Posting the cycle constraint
 cycle(succ, prev, totaldist, dist_matrix)
 ! Print all solutions found
 cp_set_solution_callback("print_solution")
 ! Set the branching strategy
 cp_set_branching(assign_and_forbid("bestregret", "bestneighbor",
                  succpred))
 setparam("KALIS_MAX_COMPUTATION_TIME", 5)
 ! Find the optimal tour
 if (cp_minimize(totaldist)) then
  if getparam("KALIS_SEARCH_LIMIT")=KALIS_SLIM_BY_TIME then
   writeln("Search time limit reached")
  else
   writeln("Done!")
  end-if
 end-if
!---------------------------------------------------------------
! **** Solution printing ****
 public procedure print_solution
  writeln("TOUR LENGTH = ", getsol(totaldist))
  thispos:=getsol(succ(0))
  nextpos:=getsol(succ(thispos))
  write("  Tour: ", thispos)
  while (nextpos <> getsol(succ(0))) do
    write(" -> ", nextpos)
    thispos:=nextpos
    nextpos:=getsol(succ(thispos))
  end-do
  writeln
 end-procedure
!---------------------------------------------------------------
! **** Variable choice ****
 public function bestregret(Vars: cpvarlist): integer
 ! Get the number of elements of "Vars"
  listsize:= getsize(Vars)
  minindex := 0
  mindist := 0
 ! Set on uninstantiated variables
  forall(i in 1..listsize) do
    if not is_fixed(getvar(Vars,i)) then
      if (i <= S) then
        bestn := getlb(getvar(Vars,i))
        v:=bestn
        mval:=dist_matrix(i-1,v)
        while (v < getub(getvar(Vars,i))) do
          v:=getnext(getvar(Vars,i),v)
          if dist_matrix(i-1,v)<=mval then
            mval:=dist_matrix(i-1,v)
            bestn:=v
          end-if
        end-do
        sbestn := getlb(getvar(Vars,i))
        mval2:= 10000000
        v:=sbestn
        if (dist_matrix(i-1,v)<=mval2 and v <> bestn) then
          mval2:=dist_matrix(i-1,v)
          sbestn:=v
        end-if
        while (v < getub(getvar(Vars,i))) do
          v:=getnext(getvar(Vars,i),v)
          if (dist_matrix(i-1,v)<=mval2 and v <> bestn) then
            mval2:=dist_matrix(i-1,v)
            sbestn:=v
          end-if
        end-do
      else
        bestn := getlb(getvar(Vars,i))
        v:=bestn
        mval:=dist_matrix(v,i-S-1)
        while (v < getub(getvar(Vars,i))) do
          v:=getnext(getvar(Vars,i),v)
          if dist_matrix(v,i-S-1)<=mval then
            mval:=dist_matrix(v,i-S-1)
            bestn:=v
          end-if
        end-do
        sbestn := getlb(getvar(Vars,i))
        mval2:= 10000000
        v:=sbestn
        if (dist_matrix(v,i-S-1)<=mval2 and v <> bestn) then
          mval2:=dist_matrix(v,i-S-1)
          sbestn:=v
        end-if
        while (v < getub(getvar(Vars,i))) do
          v:=getnext(getvar(Vars,i),v)
          if (dist_matrix(v,i-S-1)<=mval2 and v <> bestn) then
            mval2:=dist_matrix(v,i-S-1)
            sbestn:=v
          end-if
        end-do
      end-if
      dsize := getsize(getvar(Vars,i))
      rank :=  integer(10000/ dsize +(mval2 - mval))
      if (mindist<= rank) then
        mindist := rank
        minindex := i
      end-if
    end-if
  end-do
  returned := minindex
 end-function
!---------------------------------------------------------------
! **** Value choice: choose value resulting in smallest distance
 public function bestneighbor(x: cpvar): integer
  issucc := false
  idx := -1
  forall (i in CITIES)
    if (is_same(succ(i),x)) then
      idx:= i
      issucc := true
    end-if
  forall (i in CITIES)
    if (is_same(prev(i),x)) then
      idx:= i
    end-if
  if issucc then
    returned:= getlb(x)
    v:=getlb(x)
    mval:=dist_matrix(idx,v)
    while (v < getub(x)) do
      v:=getnext(x,v)
      if dist_matrix(idx,v)<=mval then
        mval:=dist_matrix(idx,v)
        returned:=v
      end-if
    end-do
  else
    returned:= getlb(x)
    v:=getlb(x)
    mval:=dist_matrix(v,idx)
    while (v < getub(x)) do
      v:=getnext(x,v)
      if dist_matrix(v,idx)<=mval then
        mval:=dist_matrix(v,idx)
        returned:=v
      end-if
     end-do
  end-if
 end-function
end-model
 © 2001-2021 Fair Isaac Corporation. All rights reserved. This documentation is the property of Fair Isaac Corporation (“FICO”). Receipt or possession of this documentation does not convey rights to disclose, reproduce, make derivative works, use, or allow others to use it except solely for internal evaluation purposes to determine whether to purchase a license to the software described in this documentation, or as otherwise set forth in a written software license agreement between you and FICO (or a FICO affiliate). Use of this documentation and the software described in it must conform strictly to the foregoing permitted uses, and no other use is permitted.
 
