Initializing help system before first use

Catenary - Solving a QCQP


Type: Hanging chain
Rating: 2 (easy-medium)
Description: This model finds the shape of a hanging chain by minimizing its potential energy.
File(s): xbcatena.java

xbcatena.java
/********************************************************
  BCL Example Problems
  ====================

  file xbcatena.java
  ``````````````````
  QCQP problem (linear objective, convex quadratic constraints)
  Based on AMPL model catenary.mod
  (Source: http://www.orfe.princeton.edu/~rvdb/ampl/nlmodels/ )

  This model finds the shape of a hanging chain by
  minimizing its potential energy.

  (c) 2008 Fair Isaac Corporation
      author: S.Heipcke, June 2008, rev. Mar. 2011
********************************************************/

import java.io.*;
import com.dashoptimization.*;

public class xbcatena {
    static final int N = 100;	    // Number of chainlinks
    static final int L = 1;	    // Difference in x-coordinates of endlinks

    static final double H = 2.0*L/N;   // Length of each link


    public static void main(String[] args) throws IOException {
        int i;
        XPRBvar [] x,y;              // x-/y-coordinates of endpoints of chainlinks
        XPRBexpr qe;
        XPRBctr cobj, c;

        try (XPRBprob prob = new XPRBprob("catenary")) { // Initialize BCL and create a new problem

            /**** VARIABLES ****/
            x = new XPRBvar[N+1];
            for(i=0;i<=N;i++)
                x[i] = prob.newVar("x(" + i + ")", XPRB.PL, -XPRB.INFINITY,
                                   XPRB.INFINITY);
            y = new XPRBvar[N+1];
            for(i=0;i<=N;i++)
                y[i] = prob.newVar("y(" + i + ")", XPRB.PL, -XPRB.INFINITY,
                                   XPRB.INFINITY);
            // Bounds: positions of endpoints
            // Left anchor
            x[0].fix(0);  y[0].fix(0);
            // Right anchor
            x[N].fix(L);  y[N].fix(0);


            /****OBJECTIVE****/
            /* Minimise the potential energy:  sum(j in 1..N) (y(j-1)+y(j))/2  */
            qe=new XPRBexpr();
            for(i=1;i<=N;i++) qe .add( y[i-1].add(y[i]) );
            cobj = prob.newCtr("Obj", qe.mul(0.5) );
            prob.setObj(cobj);                     // Set objective function

            /**** CONSTRAINTS ****/
            /* Positions of chainlinks:
               forall(j in 1..N) (x(j)-x(j-1))^2+(y(j)-y(j-1))^2 <= H^2  */
            for(i=1;i<=N;i++)
                prob.newCtr("Link_"+i, (x[i].add(x[i-1].mul(-1))).sqr()
                            .add( (y[i].add(y[i-1].mul(-1))).sqr() ).lEql(H*H) );

            /****SOLVING + OUTPUT****/
            prob.setSense(XPRB.MINIM);             // Choose the sense of optimization

            /* Problem printing and matrix output: */
            /*
              prob.print();
              prob.exportProb(XPRB.MPS, "catenary");
              prob.exportProb(XPRB.LP, "catenary");
            */

            /* Start values:
               for(i=0;i<=N;i++) x[j].setInitval(j*L/N);
               for(i=0;i<=N;i++) y[j].setInitval(0);
            */

            prob.lpOptimize("");                   // Solve the problem

            System.out.println("Solution: " + prob.getObjVal());
            for(i=0;i<=N;i++)
                System.out.println(i + ": " + x[i].getSol() + ", " + y[i].getSol() );

        }
    }
}

© 2001-2023 Fair Isaac Corporation. All rights reserved. This documentation is the property of Fair Isaac Corporation (“FICO”). Receipt or possession of this documentation does not convey rights to disclose, reproduce, make derivative works, use, or allow others to use it except solely for internal evaluation purposes to determine whether to purchase a license to the software described in this documentation, or as otherwise set forth in a written software license agreement between you and FICO (or a FICO affiliate). Use of this documentation and the software described in it must conform strictly to the foregoing permitted uses, and no other use is permitted.