/********************************************************
BCL Example Problems
====================
file xbcatena.java
``````````````````
QCQP problem (linear objective, convex quadratic constraints)
Based on AMPL model catenary.mod
(Source: http://www.orfe.princeton.edu/~rvdb/ampl/nlmodels/ )
This model finds the shape of a hanging chain by
minimizing its potential energy.
(c) 2008 Fair Isaac Corporation
author: S.Heipcke, June 2008, rev. Mar. 2011
********************************************************/
import java.io.*;
import com.dashoptimization.*;
public class xbcatena {
static final int N = 100; // Number of chainlinks
static final int L = 1; // Difference in x-coordinates of endlinks
static final double H = 2.0*L/N; // Length of each link
public static void main(String[] args) throws IOException {
int i;
XPRBvar [] x,y; // x-/y-coordinates of endpoints of chainlinks
XPRBexpr qe;
XPRBctr cobj, c;
try (XPRBprob prob = new XPRBprob("catenary")) { // Initialize BCL and create a new problem
/**** VARIABLES ****/
x = new XPRBvar[N+1];
for(i=0;i<=N;i++)
x[i] = prob.newVar("x(" + i + ")", XPRB.PL, -XPRB.INFINITY,
XPRB.INFINITY);
y = new XPRBvar[N+1];
for(i=0;i<=N;i++)
y[i] = prob.newVar("y(" + i + ")", XPRB.PL, -XPRB.INFINITY,
XPRB.INFINITY);
// Bounds: positions of endpoints
// Left anchor
x[0].fix(0); y[0].fix(0);
// Right anchor
x[N].fix(L); y[N].fix(0);
/****OBJECTIVE****/
/* Minimise the potential energy: sum(j in 1..N) (y(j-1)+y(j))/2 */
qe=new XPRBexpr();
for(i=1;i<=N;i++) qe .add( y[i-1].add(y[i]) );
cobj = prob.newCtr("Obj", qe.mul(0.5) );
prob.setObj(cobj); // Set objective function
/**** CONSTRAINTS ****/
/* Positions of chainlinks:
forall(j in 1..N) (x(j)-x(j-1))^2+(y(j)-y(j-1))^2 <= H^2 */
for(i=1;i<=N;i++)
prob.newCtr("Link_"+i, (x[i].add(x[i-1].mul(-1))).sqr()
.add( (y[i].add(y[i-1].mul(-1))).sqr() ).lEql(H*H) );
/****SOLVING + OUTPUT****/
prob.setSense(XPRB.MINIM); // Choose the sense of optimization
/* Problem printing and matrix output: */
/*
prob.print();
prob.exportProb(XPRB.MPS, "catenary");
prob.exportProb(XPRB.LP, "catenary");
*/
/* Start values:
for(i=0;i<=N;i++) x[j].setInitval(j*L/N);
for(i=0;i<=N;i++) y[j].setInitval(0);
*/
prob.lpOptimize(""); // Solve the problem
System.out.println("Solution: " + prob.getObjVal());
for(i=0;i<=N;i++)
System.out.println(i + ": " + x[i].getSol() + ", " + y[i].getSol() );
}
}
}
|