generic_binary_constraint
function generic_binary_constraint(v1:cpvar, v2:cpvar, fct: function(integer, integer): boolean) : cpctr
 function generic_binary_constraint(v1:cpvar,v2:cpvar, fctname:string) : cpctr
 | 
     v1 
     | 
     the first decision variable
     | 
| 
     v2 
     | 
     the second decision variable
     | 
| 
     fct 
     | 
     reference to a function taking two integers as arguments and returning a boolean
     | 
| 
     fctname 
     | 
     name of the function specifying the user-defined constraint, taking two integers as arguments and returning a boolean
     | 
model "Euler Knight Moves"
 uses "kalis"
 parameters
  S = 8                                  ! No. of rows/columns
 end-parameters
 N:= S * S                               ! Total number of cells
 setparam("KALIS_DEFAULT_LB", 0)
 setparam("KALIS_DEFAULT_UB", N-1)
 forward function valid_knight_move(a:integer, b:integer): boolean
 declarations
  PATH = 1..N                            ! Cells on the board
  pos: array(PATH) of cpvar              ! Position p in tour
 end-declarations
! Setting names of decision variables
 forall(i in PATH) setname(pos(i), "Position"+i)
! Fix the start position
 pos(1) = 0
! Each cell is visited once
 all_different(pos, KALIS_GEN_ARC_CONSISTENCY)
! The knight's path obeys the chess rules for valid knight moves
 forall(i in 1..N-1)
  generic_binary_constraint(pos(i), pos(i+1), ->valid_knight_move)
 generic_binary_constraint(pos(N), pos(1), ->valid_knight_move)
! Setting enumeration parameters
 cp_set_branching(probe_assign_var(KALIS_SMALLEST_MIN,
                  KALIS_MAX_TO_MIN, pos, 14))
! Search for up to NBSOL solutions
 solct:= 0
 if not cp_find_next_sol then
  writeln("No solution")
 else
  writeln(pos)
 end-if
! **** Test whether the move from a to b is admissible ****
 function valid_knight_move(a:integer, b:integer): boolean
  declarations
   xa,ya,xb,yb,delta_x,delta_y: integer
  end-declarations
  xa := a div S
  ya := a mod S
  xb := b div S
  yb := b mod S
  delta_x := abs(xa-xb)
  delta_y := abs(ya-yb)
  returned := (delta_x<=2) and (delta_y<=2) and (delta_x+delta_y=3)
 end-function
end-model
 © 2001-2023 Fair Isaac Corporation. All rights reserved. This documentation is the property of Fair Isaac Corporation (“FICO”). Receipt or possession of this documentation does not convey rights to disclose, reproduce, make derivative works, use, or allow others to use it except solely for internal evaluation purposes to determine whether to purchase a license to the software described in this documentation, or as otherwise set forth in a written software license agreement between you and FICO (or a FICO affiliate). Use of this documentation and the software described in it must conform strictly to the foregoing permitted uses, and no other use is permitted.
 
