Initializing help system before first use

The travelling salesman problem


Type: Programming
Rating: 2 (easy-medium)
Description: Solves the classic travelling salesman problem as a MIP, where sub-tour elimination constraints are added only as needed during the branch-and-bound search.
File(s): TSP.cs, TSP.csproj


TSP.cs
/***********************************************************************
   Xpress Optimizer Examples
   =========================

   file TSP.cs
   ````````````
   Solve a MIP using cuts/constraints that are lazily separated.

   We take a random instance of the symmetric TSP and solve that using
   lazily separated constraints.

   (c) 2021-2023 Fair Isaac Corporation
***********************************************************************/

using System;
using System.Linq;
using Optimizer;

namespace XPRSexamples
{
    /// <summary>Example for solving a MIP using lazily separated cuts/constraints.</summary>
    /// <remarks>
    /// We solve a random instance of the symmetric TSP using lazily separated
    /// cuts/constraints.
    ///
    /// <p>
    /// The model is based on a graph G = (V,E).
    /// We have one binary variable x[e] for each edge e in E. That variable
    /// is set to 1 if edge e is selected in the optimal tour and 0 otherwise.
    /// </p>
    /// <p>
    /// The model contains only one explicit constraint:
    /// <code>
    /// for each v in V: sum(u in V : u != v) x[uv] == 2
    /// </code>
    /// This states that from all the edges incident to a node u, exactly two
    /// must be selected in the optimal tour.
    /// </p>
    /// <p>
    /// The above constraints ensures that the selected edges form tours. However,
    /// it allows multiple tours, also known as subtours. So we need a constraint
    /// that requires that there is only one tour (which then necessarily hits
    /// all the nodes). This constraint is known as subtour elimination constraint
    /// and is
    /// <code>
    ///   sum(e in S) x[e] <= |S|-1  for each subtour S
    /// </code>
    /// Since there are exponentially many subtours in a graph, this constraint
    /// is not stated explicitly. Instead we check for any solution that the
    /// optimizer finds, whether it satisfies the subtour elimination constraint.
    /// If it does then we accept the solution. Otherwise we reject the solution
    /// and augment the model by the violated subtour eliminiation constraint.
    /// </p>
    /// <p>
    /// This lazy addition of constraints is implemented using two callbacks:
    /// - a preintsol callback that rejects any solution that violates a
    ///   subtour elimination constraint,
    /// - an optnode callback that injects any violated subtour elimination
    ///   constraints.
    /// </p>
    /// <p>
    /// An important thing to note about this strategy is that dual reductions
    /// have to be disabled. Since the optimizer does not see the whole model
    /// (subtour elimination constraints are only generated on the fly), dual
    /// reductions may cut off the optimal solution.
    /// </p>
    /// </remarks>
    public class TSP
    {
        /// <summary>
        /// A point in the plane.
        /// </summary>
        public class Point
        {
            public Point(double x, double y)
            {
                X = x;
                Y = y;
            }

            public double X { get; set; }
            public double Y { get; set; }
        }

        /** Number of nodes in the instance. */
        private readonly int nodes;
        /** Number of edges in the instance. */
        private readonly int edges;

        private readonly Point[] coordinates;
        /** Variable indices for the edges. */
        private readonly int[,] x;

        /// <summary>Construct a new random instance with random seed 0 and 10 nodes.</summary>
        public TSP() : this(10, 0) {}

        /// <summary>Construct a new random instance with random seed 0.</summary>
        /// <param name="nodes">The number of nodes in the instance.</param>
        public TSP(int nodes) : this(nodes, 0) {}

        /// <summary>Construct a new random instance.</summary>
        /// <param name="nodes">The number of nodes in the instance.</param>
        /// <param name="seed">Random number seed.</param>
        public TSP(int nodes, int seed)
        {
            this.nodes = nodes;
            edges = (nodes * (nodes - 1)) / 2;
            Random rand = new Random(seed);
            coordinates = Enumerable
                .Range(0, nodes)
                .Select((i) => new Point(4.0 * rand.NextDouble(), 4.0 * rand.NextDouble()))
                .ToArray();
            x = new int[nodes, nodes];
        }

        /// <summary>Get the distance between two nodes.</summary>
        /// <param name="u">First node.</param>
        /// <param name="v">Second node.</param>
        /// <returns>The distance between <c>u</c> and <c>v</c>. The distance is symmetric.</returns>
        public double Distance(int u, int v)
        {
            double deltaX = coordinates[u].X - coordinates[v].X;
            double deltaY = coordinates[u].Y - coordinates[v].Y;
            return Math.Sqrt(deltaX * deltaX + deltaY * deltaY);
        }

        /// <summary>Find the tour rooted at 0 in a solution.</summary>
        /// <remarks>As a side effect, the tour is printed to the console.</remarks>
        /// <param name="sol">The current solution.</param>
        /// <param name="from">Stores the tour. <c>from[u]</c> yields the predecessor of <c>u</c> in the tour.
        /// If <c>from[u]</c> is negative then <c>u</c> is not in the tour. This parameter can be <c>null</c>.</param>
        /// <returns>The length of the tour.</returns>
        private int FindTour(double[] sol, int[] from)
        {
            if (from == null)
                from = new int[nodes];
            for (int i = 0; i < from.Length; ++i)
                from[i] = -1;
            bool[] inTour = new bool[edges]; // Marks edges on the subtour

            int u = 0;
            int used = 0;
            Console.Write("0");
            do
            {
                for (int v = 0; v < nodes; ++v)
                {
                    if (u == v)                    // no self-loops
                        continue;
                    else if (from[v] != -1)        // node already on tour
                        continue;
                    else if (sol[x[u, v]] < 0.5)   // edge not selected in solution
                        continue;
                    else if (inTour[x[u, v]])      // edge already on tour
                        continue;
                    else
                    {
                        Console.Write(" -> " + v);
                        inTour[x[u, v]] = true;
                        from[v] = u;
                        used += 1;
                        u = v;
                        break;
                    }
                }
            } while (u != 0);
            Console.WriteLine();

            return used;
        }

        /// <summary>Integer solution check callback.</summary>
        private void PreIntsolCallback(XPRSprob prob, object cbdata, bool soltype, ref int p_reject, ref double p_cutoff) {
            Console.WriteLine("Checking feasible solution ...");

            // Get current solution and check whether it is feasible
            double[] sol = prob.GetLpSolX();
            int used = FindTour(sol, null);
            Console.Write("Solution is ");
            if (used<nodes)
            {
                Console.WriteLine("infeasible (" + used + " edges)");
                p_reject = 1;
            }
            else
            {
                Console.WriteLine("feasible");
            }
        }

        /// <summary>Optimal node callback.</summary>
        /// <remarks>
        /// This callback is invoked after the LP relaxation of a node is solved.
        /// This is where we can inject additional constraints as cuts.
        /// </remarks>
        private void OptnodeCallback(XPRSprob prob, object cbdata, out int p_infeasible)
        {
            // We don't consider this node infeasible. Instead we add cuts to solve
            // the LP relaxation again.
            p_infeasible = 0;

            // Only separate constraints on nodes that are integer feasible.
            if (prob.MIPInfeas != 0)
                return;

            // Get the current solution.
            double[] sol = prob.GetLpSolX();

            // Get the tour starting at 0 and check whether it covers all
            // nodes. If it does not then it is infeasible and we must
            // generate a subtour elimination constraint.
            int[] from = new int[nodes];
            int used = FindTour(sol, from);
            if (used < nodes)
            {
                // The tour is too short. Get the edges on the tour and add a
                // subtour elimination constraint
                int[] ind = new int[used];
                double[] val = Enumerable.Repeat(1.0, used).ToArray();
                for (int u = 0, next = 0; u < nodes; ++u)
                {
                    if (from[u] >= 0)
                        ind[next++] = x[u, from[u]];
                }
                // Since we created the constraint in the original space, we must
                // crush it to the presolved space before we can add it.
                XPRSprob.RowInfo r = prob.PresolveRow(ind, val, 'L', used - 1);
                if (r != null)
                    prob.AddCut(1, r);
            }
            // Here we would set p_infeasible=1 if the current node is considered
            // infeasible.
        }

        /// <summary>Create a feasible tour and add this as initial MIP solution.</summary>
        private void CreateInitialTour(XPRSprob prob)
        {
            int[] ind = new int[nodes];
            double[] val = new double[nodes];
            // Create a tour that just visits each node in order, i.e., goes from u to u+1.
            prob.AddMipSol(Enumerable.Repeat(1.0, nodes).ToArray(),
                Enumerable.Range(0, nodes).Select((u) => x[u, (u + 1) % nodes]).ToArray());
        }

        /// <summary>Solve the TSP represented by this instance.</summary>
        public void Solve()
        {
            using (XPRSprob prob = new XPRSprob("")) {
                // Create variables. We create one variable for each edge in
                // the (complete) graph. x[u][v] gives the index of the variable
                // that represents edge uv. Since edges are undirected, x[v][u]
                // gives the same variable.
                // All variables are binary.
                for (int i = 0; i < nodes; ++i)
                {
                    for (int j = i + 1; j < nodes; ++j)
                    {
                        x[j, i] = x[i, j] = prob.BinVar("x_" + i + "_" + j);
                    }
                }

                // Objective. All variables are in the objective and their
                // respective coefficient is the distance between the two nodes.
                int[] objInd = new int[edges];
                double[] objVal = new double[edges];
                for (int u = 0, nz = 0; u < nodes; ++u)
                {
                    for (int v = u + 1; v < nodes; ++v)
                    {
                        objInd[nz] = x[u, v];
                        objVal[nz] = Distance(u, v);
                        ++nz;
                    }
                }
                prob.SetObjective(objInd, objVal, ObjSense.Minimize);

                // Constraint: In the graph that is induced by the selected
                //             edges, each node should have degree 2.
                //             This is the only constraint we add explicitly.
                //             Subtour elimination constraints are added
                //             dynamically via a callback.
                for (int u = 0; u < nodes; ++u)
                {
                    int[] ind = Enumerable.Range(0, nodes)
                        .Where((v) => v != u)
                        .Select((v) => x[u,v])
                        .ToArray();
                    double[] val = Enumerable.Repeat(1.0, ind.Length).ToArray();
                    prob.AddRow(ind, val, 'E', 2);
                }

                // Create a starting solution.
                // This is optional but having a feasible solution available right
                // from the beginning can improve optimizer performance.
                CreateInitialTour(prob);

                // Write out the model in case we want to look at it.
                prob.WriteProb("tsp.lp", "l");

                // We don't have all constraints explicitly in the matrix, hence
                // we must disable dual reductions. Otherwise MIP presolve may
                // cut off the optimal solution.
                prob.MIPDualReductions = 0;

                // Add a callback that rejects solutions that do not satisfy
                // the subtour constraints.
                prob.AddPreIntsolCallback(PreIntsolCallback);

                // Add a callback that separates subtour elimination constraints
                prob.AddOptnodeCallback(OptnodeCallback);

                // Add a message listener to display log information.
                prob.AddMessageCallback((p, d, m, l, t) => { if (l > 0) Console.WriteLine(m); });

                prob.MipOptimize();

                double[] sol = prob.GetMipSolX();

                // Print the optimal tour.
                Console.WriteLine("Tour with length " + prob.MIPBestObjVal);
                FindTour(sol, null);
            }
        }

        public static void Main(String[] args)
        {
            new TSP(10).Solve();
        }
    }
}

TSP.csproj
<Project Sdk="Microsoft.NET.Sdk">

  <PropertyGroup>
    <OutputType>Exe</OutputType>
    <TargetFramework>net5.0</TargetFramework>

    <IsPackable>false</IsPackable>
    <XpressExampleFiles Condition="'$(XpressExampleFiles)'==''">../../data</XpressExampleFiles>
  </PropertyGroup>

  <ItemGroup>
    <Content Include="$(XpressExampleFiles)/coco.mps">
      <CopyToOutputDirectory>Always</CopyToOutputDirectory>
    </Content>
  </ItemGroup>

  <ItemGroup>
    <PackageReference Include="FICO.Xpress.XPRSdn" Version="38.1.2" /> <!-- Version 38.01.02 or later -->
  </ItemGroup>
  
</Project>

© 2001-2023 Fair Isaac Corporation. All rights reserved. This documentation is the property of Fair Isaac Corporation (“FICO”). Receipt or possession of this documentation does not convey rights to disclose, reproduce, make derivative works, use, or allow others to use it except solely for internal evaluation purposes to determine whether to purchase a license to the software described in this documentation, or as otherwise set forth in a written software license agreement between you and FICO (or a FICO affiliate). Use of this documentation and the software described in it must conform strictly to the foregoing permitted uses, and no other use is permitted.