Initializing help system before first use

Catenary - Solving a QCQP


Type: Hanging chain
Rating: 2 (easy-medium)
Description: This model finds the shape of a hanging chain by minimizing its potential energy.
File(s): xbcatena.java

xbcatena.java
/********************************************************
 * BCL Example Problems
 * ====================
 *
 * file xbcatena.java
 * ``````````````````
 * QCQP problem (linear objective, convex quadratic constraints)
 * Based on AMPL model catenary.mod
 * (Source: http://www.orfe.princeton.edu/~rvdb/ampl/nlmodels/ )
 *
 * This model finds the shape of a hanging chain by
 * minimizing its potential energy.
 *
 * (c) 2008-2024 Fair Isaac Corporation
 * author: S.Heipcke, June 2008, rev. Mar. 2011
 ********************************************************/

import com.dashoptimization.*;
import java.io.*;

public class xbcatena {
  static final int N = 100; // Number of chainlinks
  static final int L = 1; // Difference in x-coordinates of endlinks

  static final double H = 2.0 * L / N; // Length of each link

  public static void main(String[] args) throws IOException {
    try (XPRBprob prob = new XPRBprob("catenary"); // Initialize BCL and create a new problem
        XPRBexprContext context =
            new XPRBexprContext() /* Release XPRBexpr instances at end of block. */) {
      int i;
      XPRBvar[] x, y; // x-/y-coordinates of endpoints of chainlinks
      XPRBexpr qe;
      XPRBctr cobj, c;

      /**** VARIABLES ****/
      x = new XPRBvar[N + 1];
      for (i = 0; i <= N; i++)
        x[i] = prob.newVar("x(" + i + ")", XPRB.PL, -XPRB.INFINITY, XPRB.INFINITY);
      y = new XPRBvar[N + 1];
      for (i = 0; i <= N; i++)
        y[i] = prob.newVar("y(" + i + ")", XPRB.PL, -XPRB.INFINITY, XPRB.INFINITY);
      // Bounds: positions of endpoints
      // Left anchor
      x[0].fix(0);
      y[0].fix(0);
      // Right anchor
      x[N].fix(L);
      y[N].fix(0);

      /****OBJECTIVE****/
      /* Minimise the potential energy:  sum(j in 1..N) (y(j-1)+y(j))/2  */
      qe = new XPRBexpr();
      for (i = 1; i <= N; i++) qe.add(y[i - 1].add(y[i]));
      cobj = prob.newCtr("Obj", qe.mul(0.5));
      prob.setObj(cobj); // Set objective function

      /**** CONSTRAINTS ****/
      /* Positions of chainlinks:
      forall(j in 1..N) (x(j)-x(j-1))^2+(y(j)-y(j-1))^2 <= H^2  */
      for (i = 1; i <= N; i++)
        prob.newCtr(
            "Link_" + i,
            (x[i].add(x[i - 1].mul(-1))).sqr().add((y[i].add(y[i - 1].mul(-1))).sqr()).lEql(H * H));

      /****SOLVING + OUTPUT****/
      prob.setSense(XPRB.MINIM); // Choose the sense of optimization

      /* Problem printing and matrix output: */
      /*
        prob.print();
        prob.exportProb(XPRB.MPS, "catenary");
        prob.exportProb(XPRB.LP, "catenary");
      */

      /* Start values:
         for(i=0;i<=N;i++) x[j].setInitval(j*L/N);
         for(i=0;i<=N;i++) y[j].setInitval(0);
      */

      prob.lpOptimize(""); // Solve the problem

      System.out.println("Solution: " + prob.getObjVal());
      for (i = 0; i <= N; i++) System.out.println(i + ": " + x[i].getSol() + ", " + y[i].getSol());
    }
  }
}

© 2001-2024 Fair Isaac Corporation. All rights reserved. This documentation is the property of Fair Isaac Corporation (“FICO”). Receipt or possession of this documentation does not convey rights to disclose, reproduce, make derivative works, use, or allow others to use it except solely for internal evaluation purposes to determine whether to purchase a license to the software described in this documentation, or as otherwise set forth in a written software license agreement between you and FICO (or a FICO affiliate). Use of this documentation and the software described in it must conform strictly to the foregoing permitted uses, and no other use is permitted.