Initializing help system before first use

GoalObj - Archimedian and pre-emptive goal programming using objective functions


Type: Goal Programming
Rating: 3 (intermediate)
Description: A small linear problem with multiple objectives is solved by Archimedian and pre-emptive goal programming. The example uses functions to access information about constraints and shows how to solve a problem repeatedly with a modified objective function.
File(s): xbgoalobj.java


xbgoalobj.java
/********************************************************
 * Xpress-BCL Java Example Problems
 * ================================
 *
 * file xbgoalobj.java
 * ```````````````````
 * Archimedian and pre-emptive goal programming
 * using objective functions.
 *
 * (c) 2008-2024 Fair Isaac Corporation
 * author: S.Heipcke, 2005, rev. Mar. 2011
 ********************************************************/

import com.dashoptimization.*;

public class xbgoalobj {
  static final int NGOALS = 3;

  /**** Data ****/
  static final String[] Type = {"perc", "abs", "perc"};

  static final String[] Sense = {"max", "min", "max"};
  static final double[] Weight = {100, 1, 0.1};
  static final double[] Deviation = {10, 4, 20};

  public static void main(String[] args) throws XPRSprobException, XPRSexception {
    try (XPRBprob prob = new XPRBprob("Goal"); /* Initialize BCL and create a new problem */
        XPRBexprContext context =
            new XPRBexprContext(); /* Release XPRBexpr instances at end of block. */
        XPRS xprs = new XPRS()) {
        /* Initialize Xpress-Optimizer */
      XPRBvar x, y;
      XPRBexpr[] goal;
      XPRBexpr wobj;
      XPRBctr[] goalCtr;
      XPRBctr aCtr;
      double[] Target;
      int i, g;

      Target = new double[NGOALS];
      goalCtr = new XPRBctr[NGOALS];
      goal = new XPRBexpr[NGOALS];
      wobj = new XPRBexpr();

      /* Adding the variables */
      x = prob.newVar("x", XPRB.PL);
      y = prob.newVar("y", XPRB.PL);

      /* Adding a constraint */
      aCtr = prob.newCtr("Limit", x.mul(42).add(y.mul(13)).lEql(100));

      /* Goals */
      goal[0] = x.mul(5).add(y.mul(2)).add(-20);
      goal[1] = x.mul(-3).add(y.mul(15)).add(-48);
      goal[2] = x.mul(1.5).add(y.mul(21)).add(-3.8);
      for (g = 0; g < NGOALS; g++) goalCtr[g] = prob.newCtr("Goal" + (g + 1), goal[g]);

      /**** Archimedian GP ****/
      System.out.println("Archimedian:");
      for (g = 0; g < NGOALS; g++) {
        if (Sense[g] == "max") wobj.add(((XPRBexpr) goal[g].clone()).mul(-Weight[g]));
        else wobj.add(((XPRBexpr) goal[g].clone()).mul(Weight[g]));
      }
      prob.setObj(wobj);
      prob.getXPRSprob().setIntControl(XPRS.OUTPUTLOG, 0);
      prob.lpOptimize("");

      /* Solution printout */
      System.out.println(" Solution: x: " + x.getSol() + ", y: " + y.getSol());
      System.out.println(" Goal   Target     Value");
      for (g = 0; g < NGOALS; g++)
        System.out.println(
            "  "
                + (g + 1)
                + "       "
                + Sense[g]
                + "      "
                + (goalCtr[g].getAct() - goalCtr[g].getRHS()));

      /**** Prememptive GP ****/
      System.out.println("Prememptive:");
      i = -1;
      while (i < NGOALS - 1) {
        i += 1;
        if (Sense[i] == "max") {
          prob.setObj(goal[i]);
          prob.setSense(XPRB.MAXIM);
          prob.lpOptimize("");
          if (prob.getLPStat() != XPRB.LP_OPTIMAL) {
            System.out.println("Cannot satisfy goal " + (i + 1));
            break;
          } else {
            Target[i] = prob.getObjVal();
            if (Type[i] == "perc") Target[i] -= Math.abs(Target[i]) * Deviation[i] / 100;
            else Target[i] -= Deviation[i];
            if (i < NGOALS - 1) goalCtr[i].add(Target[i]);
            goalCtr[i].setType(XPRB.G);
          }
        } else {
          prob.setObj(goal[i]);
          prob.setSense(XPRB.MINIM);
          prob.lpOptimize("");
          if (prob.getLPStat() != XPRB.LP_OPTIMAL) {
            System.out.println("Cannot satisfy goal " + i);
            break;
          } else {
            Target[i] = prob.getObjVal();
            if (Type[i] == "perc") Target[i] += Math.abs(Target[i]) * Deviation[i] / 100;
            else Target[i] += Deviation[i];
            if (i < NGOALS - 1) goalCtr[i].add(Target[i]);
            goalCtr[i].setType(XPRB.L);
          }
        }
        System.out.println("Solution(" + (i + 1) + "):  x: " + x.getSol() + ", y: " + y.getSol());
      }

      /* Solution printout */
      System.out.println(" Goal        Target                Value");
      for (g = 0; g <= i; g++) {
        System.out.print(
            "  "
                + (g + 1)
                + "    "
                + (goalCtr[g].getType() == XPRB.G ? " >=  " : " <=  ")
                + Target[g]);
        if (g == NGOALS - 1) System.out.println("   " + prob.getObjVal());
        else System.out.println("   " + (goalCtr[g].getAct() - goalCtr[g].getRHS() + Target[g]));
      }
    }
  }
}

© 2001-2024 Fair Isaac Corporation. All rights reserved. This documentation is the property of Fair Isaac Corporation (“FICO”). Receipt or possession of this documentation does not convey rights to disclose, reproduce, make derivative works, use, or allow others to use it except solely for internal evaluation purposes to determine whether to purchase a license to the software described in this documentation, or as otherwise set forth in a written software license agreement between you and FICO (or a FICO affiliate). Use of this documentation and the software described in it must conform strictly to the foregoing permitted uses, and no other use is permitted.