(!*********************************************************************
Mosel NL examples
=================
file catenary.mos
`````````````````
Find the shape of a hanging chain by minimising its potential energy
QCQP problem (linear objective, convex quadratic constraints)
Based on AMPL model catenary.mod
Source: http://www.orfe.princeton.edu/~rvdb/ampl/nlmodels/catenary/
(c) 2008 Fair Issac Corporation
author: S. Heipcke, May 2008, rev. Mar. 2013
*********************************************************************!)
model "catenary"
uses "mmxnlp"
parameters
N = 100 ! Number of chainlinks
L = 1 ! Difference in x-coordinates of endlinks
H = 2*L/N ! Length of each link
A = 0.5 ! Height of start point, value in [-1,1]
B = 0.1 ! Height of end point, value in [-1,1]
end-parameters
declarations
RN = 0..N
x: array(RN) of mpvar ! x-coordinates of endpoints of chainlinks
y: array(RN) of mpvar ! y-coordinates of endpoints of chainlinks
end-declarations
forall(i in RN) x(i) is_free
forall(i in RN) y(i) is_free
! Objective: minimise the potential energy
potential_energy:= sum(j in RN | j>0) (y(j-1)+y(j))/2
! Bounds: positions of endpoints
! Left anchor
x(0) = 0; y(0) = A
! Right anchor
x(N) = L; y(N) = B
! Constraints: positions of chainlinks
forall(j in 1..N)
Link(j):= (x(j)-x(j-1))^2+(y(j)-y(j-1))^2 <= H^2
! Setting start values
forall(j in RN) setinitval(x(j), j*L/N)
forall(j in RN) setinitval(y(j), 0)
setparam("XNLP_verbose", true)
minimise(potential_energy)
writeln("Solution: ", getobjval)
forall(j in RN)
writeln(strfmt(getsol(x(j)),10,5), " ", strfmt(getsol(y(j)),10,5))
end-model
|
(!*********************************************************************
Mosel NL examples
=================
file catenary_graph.mos
```````````````````````
Find the shape of a hanging chain by minimising its potential energy
QCQP problem (linear objective, convex quadratic constraints)
Based on AMPL model catenary.mod
Source: http://www.orfe.princeton.edu/~rvdb/ampl/nlmodels/catenary/
- Graphical representation of results -
(c) 2008 Fair Issac Corporation
author: S. Heipcke, May 2008, rev. Sep. 2017
*********************************************************************!)
model "catenary"
uses "mmxnlp", "mmsvg"
parameters
N = 100 ! Number of chainlinks
L = 1 ! Difference in x-coordinates of endlinks
H = 2*L/N ! Length of each link
A = 0.5 ! Height of start point, value in [-1,1]
B = 0.1 ! Height of end point, value in [-1,1]
end-parameters
declarations
RN = 0..N
x: array(RN) of mpvar ! x-coordinates of endpoints of chainlinks
y: array(RN) of mpvar ! y-coordinates of endpoints of chainlinks
end-declarations
forall(i in RN) x(i) is_free
forall(i in RN) y(i) is_free
! Objective: minimise the potential energy
potential_energy:= sum(j in RN | j>0) (y(j-1)+y(j))/2
! Bounds: positions of endpoints
! Left anchor
x(0) = 0; y(0) = A
! Right anchor
x(N) = L; y(N) = B
! Constraints: positions of chainlinks
forall(j in RN | j>0)
Link(j):= (x(j)-x(j-1))^2+(y(j)-y(j-1))^2 <= H^2
! Setting start values
forall(j in RN) setinitval(x(j), j*L/N)
forall(j in RN) setinitval(y(j), 0)
setparam("XPRS_verbose", true)
minimise(potential_energy)
writeln("Solution: ", getobjval)
forall(j in RN)
writeln(strfmt(getsol(x(j)),10,5), " ", strfmt(getsol(y(j)),10,5))
! **** Display the solution as user graph ****
! Set the size of the displayed graph
svgsetgraphscale(400/L)
svgsetgraphlabels("x","y")
! Draw the chain links
svgaddgroup("S", "Solution")
svgaddline(sum(j in RN) [x(j).sol, y(j).sol])
svgsave("catenary.svg")
svgrefresh
svgwaitclose("Close browser window to terminate model execution.", 1)
end-model
|