example_loadlp.py |
# Example of the loadproblem() functionality.
#
# (C) Fair Isaac Corp., 1983-2024
import xpress as xp
p = xp.problem()
# fill in a problem with three variables and four constraints
p.loadproblem("", # probname
['G', 'G', 'E', 'L'], # qrtypes
[-2.4, -3, 4, 5], # rhs
None, # range
[3, 4, 5], # obj
[0, 2, 4, 8], # mstart
None, # mnel
[0, 1, 2, 3, 0, 1, 2, 3], # mrwind
[1, 1, 1, 1, 1, 1, 1, 1], # dmatval
[-1, -1, -1], # lb
[3, 5, 8], # ub
colnames=['x1', 'x2', 'x3'], # column names
rownames=['row1', 'row2', 'row3', 'constr_04']) # row names
p.write("loadlp", "lp")
p.optimize()
# Get a variable and modify the objective
# function. Note that the objective function is replaced by, not
# amended with, the new objective
x1 = p.getVariable(0)
p.setObjective(x1**2 + 2*x1 + 444)
p.optimize()
p.write("updated", "lp")
|
|
example_loadqp.py |
# Example of loadproblem() that adds a quadratic objective
#
# (C) Fair Isaac Corp., 1983-2024
import xpress as xp
p = xp.problem()
# fill in a problem with three variables and four constraints
p.loadproblem("", # probname
['G', 'G', 'E', 'L'], # qrtypes
[-2.4, -3, 4, 5], # rhs
None, # range
[3, 4, 5], # obj
[0, 2, 4, 8], # mstart
None, # mnel
[0, 1, 2, 3, 0, 1, 2, 3], # mrwind
[1, 1, 1, 1, 1, 1, 1, 1], # dmatval
[-1, -1, -1], # lb
[3, 5, 8], # ub
[0, 0, 0, 1, 1, 2], # mqobj1
[0, 1, 2, 1, 2, 2], # mqobj1
[2, 1, 1, 2, 1, 2]) # dqe
p.write("loadedq", "lp")
p.optimize()
|
|
example_loadqcqp.py |
# Example using loadproblem to create a quadratically constrained
# quadratic problem.
#
# (C) Fair Isaac Corp., 1983-2024
import xpress as xp
p = xp.problem()
# fill in a problem with three variables and four constraints
p.loadproblem("", # probname
['G', 'G', 'L', 'L'], # qrtypes
[-2.4, -3, 4, 5], # rhs
None, # range
[3, 4, 5], # obj
[0, 2, 4, 8], # mstart
None, # mnel
[0, 1, 2, 3, 0, 1, 2, 3], # mrwind
[1, 1, 1, 1, 1, 1, 1, 1], # dmatval
[-1, -1, -1], # lb
[3, 5, 8], # ub
[0, 0, 0, 1, 1, 2], # mqobj1
[0, 1, 2, 1, 2, 2], # mqobj1
[2, 1, 1, 2, 1, 2], # dqe
[2, 3], # qcrows
[2, 3], # qcnquads
[1, 2, 0, 0, 2], # qcmqcol1
[1, 2, 0, 2, 2], # qcmqcol2
[3, 4, 1, 1, 1]) # qcdqval
p.write("loadedqc", "lp")
p.optimize()
|
|
example_loadmiqcqp.py |
# Example: create a MIQCQP using the loadproblem() function
#
# (C) Fair Isaac Corp., 1983-2024
import xpress as xp
p = xp.problem()
# fill in a problem with three variables and four constraints
p.loadproblem("", # probname
['G', 'G', 'L', 'L'], # qrtypes
[-2.4, -3, 4, 5], # rhs
None, # range
[3, 4, 5], # obj
[0, 2, 4, 8], # mstart
None, # mnel
[0, 1, 2, 3, 0, 1, 2, 3], # mrwind
[1, 1, 1, 1, 1, 1, 1, 1], # dmatval
[-1, -1, -1], # lb
[3, 5, 8], # ub
[0, 0, 0, 1, 1, 2], # mqobj1
[0, 1, 2, 1, 2, 2], # mqobj1
[2, 1, 1, 2, 1, 2], # dqe
[2, 3], # qcrows
[2, 3], # qcnquads
[1, 2, 0, 0, 2], # qcmqcol1
[1, 2, 0, 2, 2], # qcmqcol2
[3, 4, 1, 1, 1], # qcdqval
['I', 'B'], # qgtype
[0, 1], # mgcols
[0, 2], # dlim
colnames=['y01', 'y02', 'y03'], # column names
rownames=['row01', 'row02', 'row03', 'row04']) # row names
p.write("loadedqcg", "lp")
p.optimize()
print(p.getSolution())
|
|
example_loadmiqcqp_sos.py |
# Example that uses loadproblem() to create a Mixed Integer
# Quadratically Constrained Quadratic Programming problem with two
# Special Ordered Sets
#
# (C) Fair Isaac Corp., 1983-2024
import xpress as xp
p = xp.problem()
p.loadproblem("", # probname
['G', 'G', 'L', 'L'], # qrtypes
[-2.4, -3, 4, 5], # rhs
None, # range
[3, 4, 5], # obj
[0, 2, 4, 8], # mstart
None, # mnel
[0, 1, 2, 3, 0, 1, 2, 3], # mrwind
[1, 1, 1, 1, 1, 1, 1, 1], # dmatval
[-1, -1, -1], # lb
[3, 5, 8], # ub
[0, 0, 0, 1, 1, 2], # mqobj1
[0, 1, 2, 1, 2, 2], # mqobj1
[2, 1, 1, 2, 1, 2], # dqe
[2, 3], # qcrows
[2, 3], # qcnquads
[1, 2, 0, 0, 2], # qcmqcol1
[1, 2, 0, 2, 2], # qcmqcol2
[3, 4, 1, 1, 1], # qcdqval
['I', 'S'], # qgtype
[0, 1], # mgcols
[0, 2], # dlim
['1', '1'], # qstype
[0, 2, 4], # msstart
[0, 1, 0, 2], # mscols
[1.1, 1.2, 1.3, 1.4]) # dref
p.write("loadedqcgs", "lp")
p.optimize()
|
|