/***********************************************************************
Xpress Optimizer Examples
=========================
file Polygon_userfunc.c
```````````````````````
Implement the polygon example using a user function.
Maximize the area of polygon of N vertices and diameter of 1
The position of vertices is indicated as (rho,theta) coordinates
where rho denotes the distance to the base point
(vertex with number N) and theta the angle from the x-axis.
A user (black box) function is used to implement the problem.
(c) 2017-2024 Fair Isaac Corporation
***********************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "xprs.h"
#define MAXROW 20
#define MAXCOL 20
#define MAXELT 50
#define MAXTOKEN 200
#define MAXFORMULA 20
#define PI 3.14159
void XPRS_CC Message(XPRSprob my_prob, void* my_object, const char* msg, int len, int msgtype);
/* Perform the Xpress specified function call and check its return value. */
#define CHECK_XPRSCALL(call) \
do { \
int result_ = call; \
if ( result_ != 0 ) { \
fprintf(stderr, "Line %d: Failed call to `%s`.\n", \
__LINE__, #call); \
goto returnWithError; \
} \
} while (0)
double XPRS_CC MyFunc(double* Values, void* Context);
int main(void) {
XPRSprob xprob = NULL;
int nRow, nCol, nSide, nElement, nToken, nformula, nRowName, nColName;
int iRow;
char RowType[MAXROW];
double RHS[MAXROW], OBJ[MAXCOL], Element[MAXELT], Lower[MAXCOL], Upper[MAXCOL];
int ColStart[MAXCOL + 1], RowIndex[MAXELT], ColIndex[MAXCOL];
int FormulaStart[MAXFORMULA + 1];
int Type[MAXTOKEN];
double Value[MAXTOKEN];
double InitialValue[MAXCOL];
int functionID;
int ReturnValue = 0;
int i, j;
char RowNames[500], ColNames[500];
int nMyFuncArguments;
/* Initialisation */
CHECK_XPRSCALL(XPRSinit(NULL));
CHECK_XPRSCALL(XPRScreateprob(&xprob));
/* Message callback */
CHECK_XPRSCALL(XPRSaddcbmessage(xprob, Message, NULL, 0));
nSide = 5;
nRowName = 0;
/* Rows */
nRow = nSide - 2 + (nSide - 1) * (nSide - 2) / 2 + 1;
for (i = 0; i < nRow; i++) RHS[i] = 0;
nRow = 0;
RowType[nRow++] = 'E'; /* OBJEQ */
nRowName = nRowName + 1 + sprintf(&RowNames[nRowName], "OBJEQ");
for (i = 1; i < nSide - 1; i++) {
RowType[nRow++] = 'G'; /* T2T1 .. T4T3 */
RHS[i] = 0.001;
nRowName = nRowName + 1 + sprintf(&RowNames[nRowName], "T%dT%d", i + 1, i);
}
for (i = 1; i < nSide - 1; i++) {
for (j = i + 1; j < nSide; j++) {
RowType[nRow] = 'L';
RHS[nRow++] = 1.0;
nRowName = nRowName + 1 + sprintf(&RowNames[nRowName], "V%dV%d", i, j);
}
}
RowType[nRow] = '\0';
/* Columns */
nColName = 0;
nCol = (nSide - 1) * 2 + 2;
nElement = 0;
for (i = 0; i < nCol; i++) {
OBJ[i] = 0; /* objective function */
Lower[i] = 0; /* lower bound normally zero */
Upper[i] = XPRS_PLUSINFINITY; /* upper bound infinity */
}
/* OBJX */
nCol = 0;
ColStart[nCol] = nElement;
OBJ[nCol] = 1.0;
Lower[nCol++] = XPRS_MINUSINFINITY; /* free column */
Element[nElement] = -1.0;
RowIndex[nElement++] = 0;
nColName = nColName + 1 + sprintf(&ColNames[nColName], "OBJX");
/* THETA1 - THETA 4 */
iRow = 0;
for (i = 1; i < nSide; i++) {
nColName = nColName + 1 + sprintf(&ColNames[nColName], "THETA%d", i);
InitialValue[nCol] = PI * ((double)(i)) / ((double)(nSide));
ColStart[nCol++] = nElement;
if (i < nSide - 1) {
Element[nElement] = -1;
RowIndex[nElement++] = iRow + 1;
}
if (i > 1) {
Element[nElement] = 1;
RowIndex[nElement++] = iRow;
}
iRow++;
}
Upper[nCol - 1] = PI;
/* Remaining columns come later */
for (i = 1; i < nSide; i++) {
Lower[nCol] = 0.01; /* lower bound */
Upper[nCol] = 1;
InitialValue[nCol] = 1;
ColStart[nCol++] = nElement;
nColName = nColName + 1 + sprintf(&ColNames[nColName], "RHO%d", i);
}
ColStart[nCol] = nElement;
CHECK_XPRSCALL(XPRSsetintcontrol(xprob, XPRS_MPSNAMELENGTH, 16));
CHECK_XPRSCALL(XPRSloadlp(xprob, "Polygon", nCol, nRow, RowType, RHS, NULL, OBJ,
ColStart, NULL, RowIndex, Element, Lower, Upper));
CHECK_XPRSCALL(XPRSaddnames(xprob, 1, RowNames, 0, nRow - 1));
CHECK_XPRSCALL(XPRSaddnames(xprob, 2, ColNames, 0, nCol - 1));
/* Define user function */
nToken = 0;
nMyFuncArguments = 2 * (nSide - 1);
CHECK_XPRSCALL(XPRSnlpadduserfunction(xprob, "MyArea", XPRS_USERFUNCTION_VECMAP, 2 * (nSide - 1), 1, 0, (XPRSfunctionptr)&MyFunc, &nMyFuncArguments, &functionID));
/* Build up nonlinear coefficients */
/* Area */
nToken = 0;
nformula = 0;
RowIndex[nformula] = 0;
FormulaStart[nformula++] = nToken;
Type[nToken] = XPRS_TOK_RB;
Value[nToken++] = 0;
for (i = nSide - 1; i > 0; i--) {
Type[nToken] = XPRS_TOK_COL;
Value[nToken++] = i;
Type[nToken] = XPRS_TOK_COL;
Value[nToken++] = nSide + i - 1;
}
Type[nToken] = XPRS_TOK_FUN;
Value[nToken++] = functionID;
Type[nToken] = XPRS_TOK_EOF;
Value[nToken++] = 0;
/* Distances */
for (i = 1; i < nSide - 1; i++) {
for (j = i + 1; j < nSide; j++) {
RowIndex[nformula] = iRow++;
FormulaStart[nformula++] = nToken;
Type[nToken] = XPRS_TOK_COL;
Value[nToken++] = nSide + i - 1;
Type[nToken] = XPRS_TOK_CON;
Value[nToken++] = 2;
Type[nToken] = XPRS_TOK_OP;
Value[nToken++] = XPRS_OP_EXPONENT;
Type[nToken] = XPRS_TOK_COL;
Value[nToken++] = nSide + j - 1;
Type[nToken] = XPRS_TOK_CON;
Value[nToken++] = 2;
Type[nToken] = XPRS_TOK_OP;
Value[nToken++] = XPRS_OP_EXPONENT;
Type[nToken] = XPRS_TOK_OP;
Value[nToken++] = XPRS_OP_PLUS;
Type[nToken] = XPRS_TOK_CON;
Value[nToken++] = 2;
Type[nToken] = XPRS_TOK_COL;
Value[nToken++] = nSide + i - 1;
Type[nToken] = XPRS_TOK_OP;
Value[nToken++] = XPRS_OP_MULTIPLY;
Type[nToken] = XPRS_TOK_COL;
Value[nToken++] = nSide + j - 1;
Type[nToken] = XPRS_TOK_OP;
Value[nToken++] = XPRS_OP_MULTIPLY;
Type[nToken] = XPRS_TOK_RB;
Value[nToken++] = 0;
Type[nToken] = XPRS_TOK_COL;
Value[nToken++] = j;
Type[nToken] = XPRS_TOK_COL;
Value[nToken++] = i;
Type[nToken] = XPRS_TOK_OP;
Value[nToken++] = XPRS_OP_MINUS;
Type[nToken] = XPRS_TOK_IFUN;
Value[nToken++] = XPRS_IFUN_COS;
Type[nToken] = XPRS_TOK_OP;
Value[nToken++] = XPRS_OP_MULTIPLY;
Type[nToken] = XPRS_TOK_OP;
Value[nToken++] = XPRS_OP_MINUS;
Type[nToken] = XPRS_TOK_EOF;
Value[nToken++] = 0;
}
}
FormulaStart[nformula] = nToken;
CHECK_XPRSCALL(XPRSnlploadformulas(xprob, nformula, RowIndex, FormulaStart, 1, Type, Value));
for (i = 0; i < nCol; i++) {
ColIndex[i] = i;
}
CHECK_XPRSCALL(XPRSnlpsetinitval(xprob, nCol - 1, &ColIndex[1], &InitialValue[1]));
CHECK_XPRSCALL(XPRSchgobjsense(xprob, XPRS_OBJ_MAXIMIZE));
CHECK_XPRSCALL(XPRSoptimize(xprob, "s", NULL, NULL));
goto NormalReturn;
returnWithError:
printf("\nError %d", ReturnValue);
ReturnValue = -1;
NormalReturn:
// Retrieve error from Xpress
if (ReturnValue) {
fprintf(stderr, "An error was detected during execution.\n");
if (xprob) {
int errorcode = 0;
char errorMessage[512];
XPRSgetintattrib(xprob, XPRS_ERRORCODE, &errorcode);
if (errorcode) {
XPRSgetlasterror(xprob, errorMessage);
fprintf(stderr, "Optimizer returned error code '%i' with message:\n%s\n", errorcode, errorMessage);
}
}
}
XPRSdestroyprob(xprob);
XPRSfree();
return(ReturnValue);
}
void XPRS_CC Message(XPRSprob my_prob, void* my_object, const char* msg, int len, int msgtype) {
(void)my_prob;
(void)my_object;
switch (msgtype)
{
case 4: /* error */
case 3: /* warning */
case 2: /* dialogue */
case 1: /* information */
if (len == 0)
printf("\n");
else
printf("%s\n", msg);
break;
default: /* exiting - buffers need flushing */
fflush(stdout);
break;
}
}
double XPRS_CC MyFunc(double* Values, void* Context) {
int i;
double Area;
int* nMyFuncArguments = (int*)Context;
Area = 0;
for (i = 3; i < (*nMyFuncArguments); i = i + 2) {
Area = Area + 0.5 * Values[i - 3] * Values[i - 1] * sin(Values[i] - Values[i - 2]);
}
return Area;
}
|