using System;
using Optimizer;
using System.Collections.Generic;
namespace Examples
{
/// <summary>
/// Code example that uses a user function of type "mapdelta".
/// </summary>
/// <remarks>
/// <code>
/// Xpress Optimizer Examples
/// =========================
///
/// Maximize the area of polygon of N vertices and diameter of 1
/// The position of vertices is indicated as (rho,theta) coordinates
/// where rho denotes the distance to the base point
/// (vertex with number N) and theta the angle from the x-axis.
///
/// (c) 2021-2024 Fair Isaac Corporation
/// </code>
///
/// Polygon example: maximise the area of an N sided polygon
///
/// *** Demonstrating using a simple map (R->R) userfunction ***
///
/// <code>
/// Variables:
///
/// rho : 0..N-1 ! Distance of vertex from the base point
/// theta : 0..N-1 ! Angle from x-axis
///
/// Objective:
/// (sum (i in 1..N-2) (rho(i)*rho(i-1)*sin(theta(i)-theta(i-1)))) * 0.5
///
/// Constraints:
/// Vertices in increasing degree order:
/// theta(i) >= theta(i-1) +.0001 : i = 1..N-2
/// Boundary conditions:
/// theta(N-1) <= Pi
/// 0.1 <= rho(i) <= 1 : i = 0..N-2
/// Third side of all triangles <= 1
/// rho(i)^2 + rho(j)^2 - rho(i)*rho(j)*2*cos(theta(j)-theta(i)) <= 1 : i in 0..N-3, j in i..N-2
/// </code>
/// </remarks>
public class PolygonMapDelta
{
/// <summary>
/// User function that maps a double to a double.
/// </summary>
/// <remarks>
/// This just forwards to <code>sin()</code>.
/// It also fills in the value for the derivative if that is requested.
/// </remarks>
/// <param name="value">The point at which to evaluate.</param>
/// <param name="delta">Non-zero if a derivative is requested.</param>
/// <param name="partial">Where to store the derivative.</param>
/// <returns>The value of the function evaluated at <c>value</c>.</returns>
private static double MySin(double value, double delta, double[] partial)
{
if (delta != 0.0)
partial[0] = Math.Cos(value);
return Math.Sin(value);
}
/// <summary>
/// User function that maps a double to a double.
/// </summary>
/// <remarks>
/// This just forwards to <code>cos()</code>.
/// It also fills in the value for the derivative if that is requested.
/// </remarks>
/// <param name="value">The point at which to evaluate.</param>
/// <param name="delta">Non-zero if a derivative is requested.</param>
/// <param name="partial">Where to store the derivative.</param>
/// <returns>The value of the function evaluated at <c>value</c>.</returns>
private static double MyCos(double value, double delta, double[] partial)
{
if (delta != 0.0)
partial[0] = -Math.Sin(value);
return Math.Cos(value);
}
public static void Main(String[] args)
{
using (XPRSprob prob = new XPRSprob(null))
{
// Number of sides of the Polygon
int nSide = 5;
// Theta
int[] theta = prob.VarArray('C', nSide - 1, 0.0, Math.PI,
i => "THETA" + (i + 1));
// Rho
int[] rho = prob.VarArray('C', nSide - 1, 0.01, 1.0,
i => "RHO" + (i + 1));
// Add the user functions
XPRSprob.MapDeltaFunction sin = prob.NlpAddUserFunction("mySin", 0, MySin);
XPRSprob.MapDeltaFunction cos = prob.NlpAddUserFunction("myCos", 0, MyCos);
// Objective function. We build the objective function as
// a formula in infix notation. See below for submitting a
// formula as string.
List<int> tok = new List<int>();
List<double> val = new List<double>();
for (int i = 1; i < nSide - 1; ++i)
{
if (tok.Count > 0)
{
tok.Add(Constants.TOK_OP);
val.Add(Constants.OP_PLUS);
}
tok.Add(Constants.TOK_COL); // RHO(i)
val.Add(rho[i]);
tok.Add(Constants.TOK_OP); // *
val.Add(Constants.OP_MULTIPLY);
tok.Add(Constants.TOK_COL); // RHO(i-1)
val.Add(rho[i - 1]);
tok.Add(Constants.TOK_OP); // *
val.Add(Constants.OP_MULTIPLY);
tok.Add(Constants.TOK_FUN); // mySin
val.Add(sin.GetId());
tok.Add(Constants.TOK_LB); // (
val.Add(Constants.TOK_LB);
tok.Add(Constants.TOK_COL); // THETA(i)
val.Add(theta[i]);
tok.Add(Constants.TOK_OP); // -
val.Add(Constants.OP_MINUS);
tok.Add(Constants.TOK_COL); // THETA(i-1)
val.Add(theta[i - 1]);
tok.Add(Constants.TOK_RB); // )
val.Add(Constants.TOK_RB);
tok.Add(Constants.TOK_OP); // *
val.Add(Constants.OP_MULTIPLY);
tok.Add(Constants.TOK_CON); // 0.5
val.Add(0.5);
}
tok.Add(Constants.TOK_EOF);
val.Add(0.0);
// Since nonlinear objectives cannot be directly expressed in Xpress, we maximize a free
// variable objx and constrain this variable to be equal to the nonlinear objective.
int objx = prob.AddCol(1.0, XPRS.MINUSINFINITY, XPRS.PLUSINFINITY);
int objeq = prob.AddRow(new int[]{objx}, new double[]{-1.0}, 'E', 0.0);
prob.NlpChgFormula(objeq, 0,
tok.ToArray(),
val.ToArray());
prob.ChgObjSense(ObjSense.Maximize);
// Vertices in increasing degree order
for (int i = 0; i < nSide - 2; ++i)
prob.AddRow(new int[] { theta[i], theta[i + 1] },
new double[] { -1.0, 1.0 },
'G',
0.001);
// Third side of all triangles <= 1
for (int i = 1; i < nSide - 1; i++)
{
for (int j = i + 1; j < nSide; j++)
{
int row = prob.AddRow(new int[0], new double[0], 'L', 1.0);
prob.NlpChgFormulaStr(row,
String.Format("RHO{0:d} ^ 2 + RHO{1:d} ^ 2 - RHO{2:d} * RHO{3:d} * 2 * myCos ( THETA{4:d} - THETA{5:d} )",
i, j, i, j, j, i));
}
}
//prob.writeProb("map.lp", "l");
int solvestatus = -1;
int solstatus = -1;
/* Solve the problem to local optimality */
prob.NLPSolver = Optimizer.Constants.NLPSOLVER_LOCAL;
prob.Optimize("s", out solvestatus, out solstatus);
System.Console.WriteLine("solvestatus: " + solvestatus);
System.Console.WriteLine("solstatus: " + solstatus);
System.Console.WriteLine("Solution value: " + prob.ObjVal);
double[] x = prob.GetSolution();
for (int i = 0; i < rho.Length; ++i)
System.Console.WriteLine("RHO" + (i + 1) + " = " + x[rho[i]]);
for (int i = 0; i < theta.Length; ++i)
System.Console.WriteLine("THETA" + (i + 1) + " = " + x[theta[i]]);
}
}
}
}
|