Initializing help system before first use

Solving a non-linear problem by recursion


Type: Recursion
Rating: 3 (intermediate)
Description: A non-linear problem (quadratic terms in the constraints) is solved via successive linear programming (SLP, also referred to as recursion). The constraint coefficients are changed iteratively.
File(s): RecursiveFinancialPlanning.java


RecursiveFinancialPlanning.java
// (c) 2023-2024 Fair Isaac Corporation

import static com.dashoptimization.objects.ConstantExpression.constant;
import static com.dashoptimization.objects.Utils.sum;
import static java.util.stream.IntStream.range;

import com.dashoptimization.ColumnType;
import com.dashoptimization.DefaultMessageListener;
import com.dashoptimization.XPRSconstants;
import com.dashoptimization.XPRSenumerations;
import com.dashoptimization.objects.Inequality;
import com.dashoptimization.objects.LinExpression;
import com.dashoptimization.objects.LinTermMap;
import com.dashoptimization.objects.Variable;
import com.dashoptimization.objects.XpressProblem;

/**
 * Recursion solving a non-linear financial planning problem. The problem is to
 * solve net(t) = Payments(t) - interest(t) balance(t) = balance(t-1) - net(t)
 * interest(t) = (92/365) * balance(t) * interest_rate where balance(0) = 0
 * balance[T] = 0 for interest_rate
 */
public class RecursiveFinancialPlanning {

    private static final int T = 6;

    /* Data */
    /* An INITIAL GUESS as to interest rate x */
    private static double X = 0.00;
    /* An INITIAL GUESS as to balances b(t) */
    private static final double[] B = { 1, 1, 1, 1, 1, 1 };
    private static final double[] P = { -1000, 0, 0, 0, 0, 0 }; /* Payments */
    private static final double[] R = { 206.6, 206.6, 206.6, 206.6, 206.6, 0 }; /* " */
    private static final double[] V = { -2.95, 0, 0, 0, 0, 0 }; /* " */

    /* Variables and constraints */
    static Variable[] b; /* Balance */
    static Variable x; /* Interest rate */
    static Variable dx; /* Change to x */
    static Inequality[] interest;
    static Inequality ctrd;

    private static void printIteration(XpressProblem prob, int it, double variation) {
        double[] sol = prob.getSolution();
        System.out.println(String.format("---------------- Iteration %d ----------------", it));
        System.out.println(String.format("Objective: %.2f", prob.attributes().getObjVal()));
        System.out.println(String.format("Variation: %.2f", variation));
        System.out.println(String.format("x: %.2f", x.getValue(sol)));
        System.out.println(String.format("----------------------------------------------", it));
    }

    private static void printProblemSolution(XpressProblem prob) {
        double[] sol = prob.getSolution();
        System.out.println(String.format("Objective: %.2f", prob.attributes().getObjVal()));
        System.out.println(String.format("Interest rate: %.2f percent", x.getValue(sol) * 100));
        System.out.printf("Variables:%n\t");
        for (Variable v : prob.getVariables()) {
            System.out.print(String.format("[%s: %.2f] ", v.getName(), v.getValue(sol)));
        }
        System.out.println();
    }

    /***********************************************************************/
    private static void modFinNLP(XpressProblem p) {
        interest = new Inequality[T];
        interest = new Inequality[T];

        // Balance
        b = p.addVariables(T).withType(ColumnType.Continuous).withName(t -> String.format("b_%d", t))
                .withLB(XPRSconstants.MINUSINFINITY).toArray();

        // Interest rate
        x = p.addVariable(0.0, XPRSconstants.PLUSINFINITY, ColumnType.Continuous, "x");

        // Interest rate change
        dx = p.addVariable(XPRSconstants.MINUSINFINITY, XPRSconstants.PLUSINFINITY, ColumnType.Continuous, "dx");

        Variable[] i = p.addVariables(T).withType(ColumnType.Continuous).withName(t -> String.format("i_%d", t))
                .toArray();

        Variable[] n = p.addVariables(T).withType(ColumnType.Continuous).withName(t -> String.format("n_%d", t))
                .withLB(XPRSconstants.MINUSINFINITY).toArray();

        Variable[] epl = p.addVariables(T).withType(ColumnType.Continuous).withName(t -> String.format("epl_%d", t))
                .toArray();

        Variable[] emn = p.addVariables(T).withType(ColumnType.Continuous).withName(t -> String.format("emn_%d", t))
                .toArray();

        // Fixed variable values
        i[0].setLB(0).setUB(0);
        b[T - 1].setLB(0).setUB(0);

        // Objective
        p.setObjective(sum(sum(epl), sum(emn)), XPRSenumerations.ObjSense.MINIMIZE);

        // Constraints
        // net = payments - interest
        p.addConstraints(T,
                t -> n[t].eq(sum(constant(P[t] + R[t] + V[t]), i[t].mul(-1))).setName(String.format("net_%d", t)));

        // Money balance across periods
        p.addConstraints(T, t -> b[t].eq(t > 0 ? b[t - 1] : constant(0.0)).setName(String.format("bal_%d", t)));

        // i(t) = (92/365)*( b(t-1)*X + B(t-1)*dx ) approx.
        range(1, T).forEach(t -> {
            LinExpression iepx = new LinTermMap();
            iepx.addTerm(b[t - 1], X);
            iepx.addTerm(dx, B[t - 1]);
            iepx.addTerm(epl[t], 1.0);
            iepx.addTerm(emn[t], 1.0);
            interest[t] = p.addConstraint(i[t].mul(365 / 92.0).eq(iepx).setName(String.format("int_%d", t)));
        });

        // x = dx + X
        ctrd = p.addConstraint(x.eq(sum(dx, constant(X)))).setName("def");
        p.writeProb("Recur.lp", "l");
    }

    /**************************************************************************/
    /* Recursion loop (repeat until variation of x converges to 0): */
    /* save the current basis and the solutions for variables b[t] and x */
    /* set the balance estimates B[t] to the value of b[t] */
    /* set the interest rate estimate X to the value of x */
    /* reload the problem and the saved basis */
    /* solve the LP and calculate the variation of x */
    /**************************************************************************/
    private static void solveFinNLP(XpressProblem p) {
        double variation = 1.0;

        // Switch automatic cut generation off
        p.controls().setCutStrategy(XPRSconstants.CUTSTRATEGY_NONE);
        // Solve the LP-problem
        p.lpOptimize();
        if (p.attributes().getSolStatus() != XPRSenumerations.SolStatus.OPTIMAL)
            throw new RuntimeException("failed to optimize with status " + p.attributes().getSolStatus());

        for (int it = 1; variation > 1e-6; ++it) {
            // Optimization solution
            final double[] sol = p.getSolution();

            printIteration(p, it, variation);
            printProblemSolution(p);
            // Change coefficients in interest[t]
            // Note: when inequalities are added to a problem then all variables are moved
            // to
            // the left-hand side and all constants are moved to the right-hand side. Since
            // we
            // are changing these extracted inequalities directly, we have to use negative
            // coefficients below.
            range(1, T).forEach(t -> {
                p.chgCoef(interest[t], dx, -b[t - 1].getValue(sol));
                p.chgCoef(interest[t], b[t - 1], -x.getValue(sol));
            });

            // Change constant term of ctrd
            ctrd.setRhs(x.getValue(sol));

            // Solve the LP-problem
            p.lpOptimize();
            double[] newsol = p.getSolution();
            if (p.attributes().getSolStatus() != XPRSenumerations.SolStatus.OPTIMAL)
                throw new RuntimeException("failed to optimize with status " + p.attributes().getSolStatus());
            variation = Math.abs(x.getValue(newsol) - x.getValue(sol));
        }
        printProblemSolution(p);
    }

    public static void main(String[] args) {
        try (XpressProblem prob = new XpressProblem()) {
            prob.callbacks.addMessageCallback(DefaultMessageListener::console);
            prob.controls().setMIPLog(0);

            modFinNLP(prob);
            solveFinNLP(prob);
        }
    }
}

© 2001-2024 Fair Isaac Corporation. All rights reserved. This documentation is the property of Fair Isaac Corporation (“FICO”). Receipt or possession of this documentation does not convey rights to disclose, reproduce, make derivative works, use, or allow others to use it except solely for internal evaluation purposes to determine whether to purchase a license to the software described in this documentation, or as otherwise set forth in a written software license agreement between you and FICO (or a FICO affiliate). Use of this documentation and the software described in it must conform strictly to the foregoing permitted uses, and no other use is permitted.