Initializing help system before first use

Solve an LP and a MIP using Xpress-R


Type: Programming
Rating: 1 (simple)
Description:

This example shows how to solve LP and MIP models.

File(s): solving_an_lp_and_a_mip.R
Data file(s): flp.lp


solving_an_lp_and_a_mip.R
#####################################
# This file is part of the          #
# Xpress-R interface examples       #
#                                   #
#   (c) 2022-2025 Fair Isaac Corporation #
#####################################
#' ---
#' title: "Solving an LP and a MIP Model"
#' author: Gregor Hendel
#' date: Dec. 2020
#' ---
#' 

#' 
#' This example shows how to solve LP and MIP models.
#' 
#' If you haven't done so already, please familiarize yourself with the Facility
#' Location Example example, which we use throughout our quick examples.
#' 
#' # Solving an LP
#' 
#' We solve a very small LP and retrieve both the solution and the primal slacks of
#' the solution.
#' 
## ----A simple 2 by 2 LP problem-----------------------------------------------
suppressMessages(library(xpress))

# max        x2
# s.t.  x1 + x2 >= 11
#       x1 + x2 <= 13
#     - x1 + x2 >= 2
#     - x1 + x2 <= 4
#         x1,x2 >= 0

# create a fresh problem data
problemdata <- list()

# objective
problemdata$objcoef <- c(0,1)

# row coefficients as a dense matrix object
problemdata$A <- matrix(c(1,1,
                          1,1,
                         -1,1,
                         -1,1), ncol = 2, byrow = T)
# right hand side
problemdata$rhs <- c(11,13, 2,4)

# constraint sense
problemdata$rowtype <- c("G", "L", "G", "L")

# lower bounds on the variables
problemdata$lb <- c(0,0)

# upper bounds on the variables
problemdata$ub <- c(Inf, Inf)

# problem name
problemdata$probname <- "2x2LP"

# load everything into a (newly created) XPRSprob object 'p'
p <- xprs_loadproblemdata(problemdata=problemdata)

# change to maximization
chgobjsense(p, -1L) # -1 stands for maximization, + 1 stands for minimization
print(p)

#' 
#' 
#' Let's solve this example LP and query the solution
## ----Solve This LP------------------------------------------------------------

# enable output to stdout
setoutput(p)

# summarize the optimization
summary(xprs_optimize(p))

# print the LP status and the LP Objective value. We access them by passing
# the attribute integer indices that are part of the Xpress package, but
# not exposed upon loading the library to avoid polluting the global namespace
print(getintattrib(p, xpress:::LPSTATUS))
print(getdblattrib(p, xpress:::LPOBJVAL))

# print the solution
print(getsolution(p)$x)

#' # Solving a MIP
#' 
#' We read the Facility location problem from the introductory example. This frees
#' the LP from before.
#' 
## ----Read Facility Location Problem-------------------------------------------
readprob(p, "flp.lp")

#' 
#' By printing the MIP entities attribute we can see that this is now a
#' mixed-integer or, more precisely, a mixed-binary program:
#' 
## ----Print MIP Entities-------------------------------------------------------
print(getintattrib(p, xpress:::MIPENTS))

#' 
#' We solve this problem using `xprs_optimize`.
#' 
#' The optional flags argument allows to specify
#' the LP root algorithm: 'b' for the barrier algorithm, 'd' for the dual simplex
#' algorithm, and 'p' for the primal simplex algorithm.
#' 
## -----------------------------------------------------------------------------
 # optionally: try mipoptimize(p, "d")
summary(xprs_optimize(p, "b"))

#' 
#' To retrieve the MIP solution, we call
## ----Get the solution---------------------------------------------------------
print(getsolution(p)$x)

#' which returns a named list with solution values 'x' and solution status 'status'.

© 2001-2025 Fair Isaac Corporation. All rights reserved. This documentation is the property of Fair Isaac Corporation (“FICO”). Receipt or possession of this documentation does not convey rights to disclose, reproduce, make derivative works, use, or allow others to use it except solely for internal evaluation purposes to determine whether to purchase a license to the software described in this documentation, or as otherwise set forth in a written software license agreement between you and FICO (or a FICO affiliate). Use of this documentation and the software described in it must conform strictly to the foregoing permitted uses, and no other use is permitted.