Initializing help system before first use

Locating electrons on a conducting sphere


Type: Nonconvex NLP
Rating: 3 (intermediate)
Description: Finds the equilibrium state distribution of electrons positioned on a conducting sphere. The problem is formulated as a nonconvex NLP problem.
File(s): sphere.mos, sphere_graph.mos


sphere.mos
(!*********************************************************************
   Mosel NL examples
   =================
   file sphere.mos
   ```````````````
   Find the eqilibrium state distribution of electrons 
   positioned on a conducting sphere.
   Nonconvex NLP problem.
   - Alternative objective functions selected via parameter ALG -

   Based on AMPL model fekete.mod
   Source: http://www.orfe.princeton.edu/~rvdb/ampl/nlmodels/fekete/

   *** This model cannot be run with a Community Licence 
       for the provided data instance ***

   (c) 2013 Fair Issac Corporation
       author: S. Heipcke, Mar. 2013, rev. Jun. 2023
*********************************************************************!)
    
model "Points on sphere"
  uses "mmxnlp"

  parameters
    NP = 50
    MDIM = 3
    ALG = 2     ! 0: minimize z, 1: maximize Separation, 2: minimize Potential
  end-parameters

  declarations
    POINTS = 1..NP                           ! Set of points to place
    DIMS = 1..MDIM                           ! Dimensions
    x: array(POINTS, DIMS) of mpvar          ! Coordinate tuples
    z: mpvar                                 ! Objective variable
  end-declarations

! Set initial values (= randomly distributed points on the sphere)
  setrandseed(3)
  if MDIM=2 then
    forall(i in POINTS) do
      theta(i):= 2*M_PI*random
      setinitval(x(i,1), cos(theta(i)) )
      setinitval(x(i,2), sin(theta(i)) ) 
    end-do
  elif MDIM=3 then
    forall(i in POINTS) do
      theta(i):= 2*M_PI*random
      phi(i):= M_PI*random
      setinitval(x(i,1), cos(theta(i))*sin(phi(i)) )
      setinitval(x(i,2), sin(theta(i))*sin(phi(i)) )
      setinitval(x(i,3), cos(phi(i)) ) 
    end-do
  end-if

  forall (i in 1..NP, j in DIMS) x(i,j) is_free
         
! Alternative objective function definitions
  forall (i,j in POINTS | i<j) sum(k in DIMS) x(i,k)*x(j,k) <= z
  Separation:= sum(i,j in POINTS | i<j) log(sum(k in DIMS) (x(i,k)-x(j,k))^2)
  Potential:= sum(i,j in POINTS | i<j) 1/sqrt(sum(k in DIMS) (x(i,k)-x(j,k))^2)

! All points lie on the sphere
  forall(i in POINTS) sum(k in DIMS) x(i,k)^2 = 1.0

! Setting up and solving the problem
  setparam("xnlp_verbose", true)
  
! In this example we will use a local solver, since it can be time consuming to solve it to global optimality 
  setparam("xprs_nlpsolver", 1)
    
  case ALG of  
    0: minimize(z)
    1: maximize(Separation)     ! Maximize separation between points
    2: minimize(Potential)      ! Minimize potential energy (Coulomb potential)
    else writeln("Invalid optimization goal choice"); exit(1)
  end-case

! Test whether a solution is available
  nlstat:=getparam("XNLP_STATUS")
  if nlstat<>XNLP_STATUS_LOCALLY_OPTIMAL and nlstat<>XNLP_STATUS_OPTIMAL then
    writeln("No solution found.")
    exit(0)
  end-if   

! Display the results
  writeln("Value of z = ", z.sol)
  writeln("Potential  = ", Potential.sol)
  writeln("Separation = ", Separation.sol)
  forall(i in POINTS) do
    write(" x(", i, ") = [")
    forall(k in DIMS) write(x(i,k).sol, if(k<MDIM, ",", ""))
    writeln("]")
  end-do  
  
end-model

sphere_graph.mos
(!*********************************************************************
   Mosel NL examples
   =================
   file sphere_graph.mos
   `````````````````````
   Find the eqilibrium state distribution of electrons 
   positioned on a conducting sphere.
   Nonconvex NLP problem.
   - Alternative objective functions selected via parameter ALG -

   Based on AMPL model fekete.mod
   Source: http://www.orfe.princeton.edu/~rvdb/ampl/nlmodels/fekete/

   - Graphical representation of results -   

   *** This model cannot be run with a Community Licence 
       for the provided data instance ***

   (c) 2013 Fair Issac Corporation
       author: S. Heipcke, Mar. 2013, rev. Jun. 2023
*********************************************************************!)
    
model "Points on sphere"
  uses "mmxnlp", "mmsvg"

  parameters
    NP = 50
    MDIM = 3
    ALG = 2     ! 0: minimize z, 1: maximize Separation, 2: minimize Potential
  end-parameters

  declarations
    POINTS = 1..NP                           ! Set of points to place
    DIMS = 1..MDIM                           ! Dimensions
    x: array(POINTS, DIMS) of mpvar          ! Coordinate tuples
    z: mpvar                                 ! Objective variable
  end-declarations

! Set initial values (= randomly distributed points on the sphere)
  setrandseed(3)
  if MDIM=2 then
    forall(i in POINTS) do
      theta(i):= 2*M_PI*random
      setinitval(x(i,1), cos(theta(i)) )
      setinitval(x(i,2), sin(theta(i)) ) 
    end-do
  elif MDIM=3 then
    forall(i in POINTS) do
      theta(i):= 2*M_PI*random
      phi(i):= M_PI*random
      setinitval(x(i,1), cos(theta(i))*sin(phi(i)) )
      setinitval(x(i,2), sin(theta(i))*sin(phi(i)) )
      setinitval(x(i,3), cos(phi(i)) ) 
    end-do
  end-if

  forall (i in 1..NP, j in DIMS) x(i,j) is_free
         
! Alternative objective function definitions
  forall (i,j in POINTS | i<j) sum(k in DIMS) x(i,k)*x(j,k) <= z
  Separation:= sum(i,j in POINTS | i<j) log(sum(k in DIMS) (x(i,k)-x(j,k))^2)
  Potential:= sum(i,j in POINTS | i<j) 1/sqrt(sum(k in DIMS) (x(i,k)-x(j,k))^2)

! All points lie on the sphere
  forall(i in POINTS) sum(k in DIMS) x(i,k)^2 = 1.0

! Setting up and solving the problem
  setparam("xnlp_verbose", true)
  
! In this example we will use a local solver, since it can be time consuming to solve it to global optimality 
  setparam("xprs_nlpsolver", 1)
    
  case ALG of  
    0: minimize(z)
    1: maximize(Separation)     ! Maximize separation between points
    2: minimize(Potential)      ! Minimize potential energy (Coulomb potential)
    else writeln("Invalid optimization goal choice"); exit(1)
  end-case

! Test whether a solution is available
  nlstat:=getparam("XNLP_STATUS")
  if nlstat<>XNLP_STATUS_LOCALLY_OPTIMAL and nlstat<>XNLP_STATUS_OPTIMAL then
    writeln("No solution found.")
    exit(0)
  end-if   

! Display the results
  writeln("Value of z = ", z.sol)
  writeln("Potential  = ", Potential.sol)
  writeln("Separation = ", Separation.sol)
  forall(i in POINTS) do
    write(" x(", i, ") = [")
    forall(k in DIMS) write(x(i,k).sol, if(k<MDIM, ",", ""))
    writeln("]")
  end-do  
  
!**************** Graphical representation of results ****************

!  svgsetgraphviewbox(-1.5,-1.5,3,3)

  if MDIM = 2 then         ! Planar graph
    svgaddgroup("Sphere","Sphere", svgcolor(75,100,125))
    svgaddcircle(0,0,1)
    svgaddgroup("Sol","Solution", SVG_GOLD)
    forall(i in POINTS) svgaddpoint(getsol(x(i,1)), getsol(x(i,2)))	 
  elif MDIM>=3 then        ! 3D projection
    svgaddgroup("S", "Sphere")
    forall(sz in union(i in 0..50) {i*1/50}) do
      offset:=0.2*sz
    ! Overlay circles of different size+colour to obtain 3D effect      
      svgaddellipse(0,0, 1-sz+offset, 1-sz+offset/2)
      col:=svgcolor(50,50+round(100*sz),75+round(125*sz))
      svgsetstyle(svggetlastobj, SVG_FILL,col)
      svgsetstyle(svggetlastobj, SVG_STROKE,col)
    end-do 
    svgaddgroup("Sol","Solution", SVG_GOLD)
    forall(i in POINTS | x(i,3).sol<=0 or 
                        (x(i,1).sol+x(i,1).sol/2>0 and x(i,3).sol<=0.1)) do
      offset:=0.2*x(i,3).sol
      svgaddpoint(getsol(x(i,1))+offset,  getsol(x(i,2))+offset/2 )
    end-do   
  end-if  

 svgsetgraphscale(100)
 svgsetgraphlabels("x1","x2")

! Alternatively change individual sizes:
! svgsetgraphstyle(SVG_STROKEWIDTH,0.01)
! svgsetgraphpointsize(0.02)
 
 svgsave("sphere.svg")
 svgrefresh
 svgwaitclose("Close browser window to terminate model execution.", 1)
end-model

© 2001-2025 Fair Isaac Corporation. All rights reserved. This documentation is the property of Fair Isaac Corporation (“FICO”). Receipt or possession of this documentation does not convey rights to disclose, reproduce, make derivative works, use, or allow others to use it except solely for internal evaluation purposes to determine whether to purchase a license to the software described in this documentation, or as otherwise set forth in a written software license agreement between you and FICO (or a FICO affiliate). Use of this documentation and the software described in it must conform strictly to the foregoing permitted uses, and no other use is permitted.