'''*******************************************************
* Python Example Problems *
* *
* file burglar.py *
* Example for the use of the Python language *
* (Burglar problem) *
* *
* (c) 2018-2025 Fair Isaac Corporation *
*******************************************************'''
import xpress as xp
Items = range(8)
WTMAX = 102 # Max weight allowed for haul
p = xp.problem()
x = [p.addVariable(vartype=xp.binary) for _ in Items]
VALUE = [15, 100, 90, 60, 40, 15, 10, 1]
WEIGHT = [2, 20, 20, 30, 40, 30, 60, 10]
# Objective: maximize total value
p.setObjective(xp.Sum(VALUE[i]*x[i] for i in Items),
sense=xp.maximize)
# Weight restriction
p.addConstraint(xp.Sum(WEIGHT[i]*x[i] for i in Items) <= WTMAX)
p.optimize() # Solve the MIP-problem
# Print out the solution
print("Solution:\n Objective: ", p.attributes.objval)
for i in Items:
print(" x(", i, "): ", p.getSolution(x[i]))
|
'''*******************************************************
* Python Example Problems *
* *
* file burglari.py *
* Example for the use of the Python language *
* (Burglar problem) *
* *
* (c) 2018-2025 Fair Isaac Corporation *
*******************************************************'''
import xpress as xp
Items = set(["camera", "necklace", "vase", "picture", "tv", "video",
"chest", "brick"]) # Index set for items
WTMAX = 102 # Max weight allowed for haul
VALUE = {"camera": 15, "necklace": 100, "vase": 90, "picture": 60,
"tv": 40, "video": 15, "chest": 10, "brick": 1}
WEIGHT = {"camera": 2, "necklace": 20, "vase": 20, "picture": 30,
"tv": 40, "video": 30, "chest": 60, "brick": 10}
p = xp.problem()
x = p.addVariables(Items, vartype=xp.binary) # 1 if we take item i; 0 otherwise
# Objective: maximize total value
p.setObjective(xp.Sum(VALUE[i]*x[i] for i in Items), sense=xp.maximize)
# Weight restriction
p.addConstraint(xp.Sum(WEIGHT[i]*x[i] for i in Items) <= WTMAX)
p.optimize() # Solve the MIP-problem
# Print out the solution
print("Solution:\n Objective: ", p.attributes.objval)
for i in Items:
print(" x(", i, "): ", p.getSolution(x[i]))
|
'''*******************************************************
* Python Example Problems *
* *
* file burglarl.py *
* Example for the use of the Python language *
* (Burglar problem) *
* -- Formulation of logical constraints -- *
* *
* (c) 2018-2025 Fair Isaac Corporation *
*******************************************************'''
import xpress as xp
Items = set(["camera", "necklace", "vase", "picture", "tv", "video",
"chest", "brick"]) # Index set for items
WTMAX = 102 # Max weight allowed for haul
VALUE = {"camera": 15, "necklace": 100, "vase": 90, "picture": 60,
"tv": 40, "video": 15, "chest": 10, "brick": 1}
WEIGHT = {"camera": 2, "necklace": 20, "vase": 20, "picture": 30,
"tv": 40, "video": 30, "chest": 60, "brick": 10}
p = xp.problem()
x = p.addVariables(Items, vartype=xp.binary) # 1 if we take item i; 0 otherwise
# Objective: maximize total value
p.setObjective(xp.Sum(VALUE[i]*x[i] for i in Items), sense=xp.maximize)
# Weight restriction
p.addConstraint(xp.Sum(WEIGHT[i]*x[i] for i in Items) <= WTMAX)
# *** Logic constraint:
# *** Either take "vase" and "picture" or "tv" and "video"
# (but not both pairs).
# * Values within each pair are the same
p.addConstraint(x["vase"] == x["picture"])
p.addConstraint(x["tv"] == x["video"])
# * Choose exactly one pair (uncomment one of the 3 formulations A, B, or C)
# (A) MIP formulation
# p.addConstraint(x["tv"] == 1 - x["vase"])
# (B) Logic constraint
# Note: Xpress Python interface doesn't use xor.
# Need to introduce extra variable
y = p.addVariable(vartype=xp.binary)
# (C) Alternative logic formulation
p.addIndicator(y == 1, x["tv"] + x["video"] >= 2)
p.addIndicator(y == 0, x["vase"] + x["picture"] >= 2)
p.addConstraint(x["tv"] + x["video"] + x["vase"] + x["picture"] <= 3)
p.optimize() # Solve the MIP-problem
# Print out the solution
print("Solution:\n Objective: ", p.attributes.objval)
for i in Items:
print(" x(", i, "): ", p.getSolution(x[i]))
|
'''******************************************************
Python Example Problems
file burglar_rec.py
(c) 2018-2025 Fair Isaac Corporation
*******************************************************'''
import xpress as xp
from Data.burglar_rec_dat import I
WTMAX = 102 # Maximum weight allowed
ITEMS = set(["camera", "necklace", "vase", "picture", "tv", "video",
"chest", "brick"]) # Index set for items
p = xp.problem()
take = {i: p.addVariable(vartype=xp.binary) for i in I.keys()}
# Objective: maximize total value
p.setObjective(xp.Sum(I[i][0] * take[i] for i in ITEMS),
sense=xp.maximize)
# Weight restriction
p.addConstraint(xp.Sum(I[i][0] * take[i] for i in ITEMS) <= WTMAX)
p.optimize() # Solve the MIP-problem
# Print out the solution
print("Solution:\n Objective: ", p.attributes.objval)
for i in ITEMS:
print(" take(", i, "): ", p.getSolution(take[i]))
|