Initializing help system before first use

Providing initial values


Type: Programming
Rating: 3 (intermediate)
Description: Demonstrates how to add initial values to nonlinear variables
File(s): Polygon_initialvalue.c


Polygon_initialvalue.c
/***********************************************************************
   Xpress Optimizer Examples
   =========================

   file Polygon_initialvalue.c
   ``````````````````````````
   Implement the polygon example using tokens and initial values

   Maximize the area of polygon of N vertices and diameter of 1
   The position of vertices is indicated as (rho,theta) coordinates
   where rho denotes the distance to the base point
   (vertex with number N) and theta the angle from the x-axis.
   The nonlinear expressions are described using formula tokens,
   and providing initial values to the nonlinear variables.

   This example uses the coefficients interface; see other examples
   for using the simplified formula interface.

   (c) 2017-2025 Fair Isaac Corporation
***********************************************************************/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>

#include "xprs.h"

#define MAXROW 20
#define MAXCOL 20
#define MAXELT 50
#define MAXTOKEN 200
#define MAXCOEF 20

#define PI 3.14159

void XPRS_CC Message(XPRSprob my_prob, void* my_object, const char* msg, int len, int msgtype);

/* Perform the Xpress specified function call and check its return value. */
#define CHECK_XPRSCALL(call)                             \
  do {                                                   \
    int result_ = call;                                  \
    if ( result_ != 0 ) {                                \
      fprintf(stderr, "Line %d: Failed call to `%s`.\n", \
              __LINE__, #call);                          \
      goto returnWithError;                              \
    }                                                    \
  } while (0)

int main(void) {
  XPRSprob xprob = NULL;

  int nRow, nCol, nSide, nElement, nToken, nCoef, nRowName, nColName;
  int iRow;
  char RowType[MAXROW];
  double RHS[MAXROW], OBJ[MAXCOL], Element[MAXELT], Lower[MAXCOL], Upper[MAXCOL];
  int ColStart[MAXCOL + 1], RowIndex[MAXELT];
  int ColIndex[MAXCOEF], FormulaStart[MAXCOEF + 1];
  int Type[MAXTOKEN];
  double Value[MAXTOKEN], Factor[MAXCOEF];

  double InitialValue[MAXCOL];

  int ReturnValue = 0;
  int i, j;
  char RowNames[500], ColNames[500];

  /* Initialisation */
  CHECK_XPRSCALL(XPRSinit(NULL));
  CHECK_XPRSCALL(XPRScreateprob(&xprob));

  /* Message callback */
  CHECK_XPRSCALL(XPRSaddcbmessage(xprob, Message, NULL, 0));

  nSide = 5;
  nRowName = 0;

  /* Rows */
  nRow = nSide - 2 + (nSide - 1) * (nSide - 2) / 2 + 1;
  for (i = 0; i < nRow; i++) RHS[i] = 0;

  nRow = 0;
  RowType[nRow++] = 'E'; /* OBJEQ */
  nRowName = nRowName + 1 + sprintf(&RowNames[nRowName], "OBJEQ");
  for (i = 1; i < nSide - 1; i++) {
    RowType[nRow++] = 'G'; /* T2T1 .. T4T3 */
    RHS[i] = 0.001;
    nRowName = nRowName + 1 + sprintf(&RowNames[nRowName], "T%dT%d", i + 1, i);
  }

  for (i = 1; i < nSide - 1; i++) {
    for (j = i + 1; j < nSide; j++) {
      RowType[nRow] = 'L';
      RHS[nRow++] = 1.0;
      nRowName = nRowName + 1 + sprintf(&RowNames[nRowName], "V%dV%d", i, j);
    }
  }
  RowType[nRow] = '\0';

  /* Columns */
  nColName = 0;
  nCol = (nSide - 1) * 2 + 2;
  nElement = 0;
  for (i = 0; i < nCol; i++) {
    OBJ[i] = 0;					  /* objective function */
    Lower[i] = 0;				  /* lower bound normally zero */
    Upper[i] = XPRS_PLUSINFINITY; /* upper bound infinity */
  }

  /* OBJX */
  nCol = 0;
  ColStart[nCol] = nElement;
  OBJ[nCol] = 1.0;
  Lower[nCol++] = XPRS_MINUSINFINITY; /* free column */
  Element[nElement] = -1.0;
  RowIndex[nElement++] = 0;
  nColName = nColName + 1 + sprintf(&ColNames[nColName], "OBJX");

  /* THETA1 - THETA 4 */
  iRow = 0;
  for (i = 1; i < nSide; i++) {
    nColName = nColName + 1 + sprintf(&ColNames[nColName], "THETA%d", i);
    InitialValue[nCol] = PI * ((double)(i)) / ((double)(nSide));
    ColStart[nCol++] = nElement;
    if (i < nSide - 1) {
      Element[nElement] = -1;
      RowIndex[nElement++] = iRow + 1;
    }
    if (i > 1) {
      Element[nElement] = 1;
      RowIndex[nElement++] = iRow;
    }
    iRow++;
  }

  Upper[nCol - 1] = PI;

  /* Equals column */
  nColName = nColName + 1 + sprintf(&ColNames[nColName], "=");
  ColStart[nCol] = nElement;
  Lower[nCol] = Upper[nCol] = 1.0; /* fixed at 1.0 */
  InitialValue[nCol] = 1;
  nCol++;

  /* Remaining columns come later */
  for (i = 1; i < nSide; i++) {
    Lower[nCol] = 0.01;	  /* lower bound */
    Upper[nCol] = 1;
    InitialValue[nCol] = 1;
    ColStart[nCol++] = nElement;
    nColName = nColName + 1 + sprintf(&ColNames[nColName], "RHO%d", i);
  }
  ColStart[nCol] = nElement;

  CHECK_XPRSCALL(XPRSsetintcontrol(xprob, XPRS_MPSNAMELENGTH, 16));

  CHECK_XPRSCALL(XPRSloadlp(xprob, "Polygon", nCol, nRow, RowType, RHS, NULL, OBJ,
    ColStart, NULL, RowIndex, Element, Lower, Upper));
  CHECK_XPRSCALL(XPRSaddnames(xprob, 1, RowNames, 0, nRow - 1));
  CHECK_XPRSCALL(XPRSaddnames(xprob, 2, ColNames, 0, nCol - 1));

  /* Build up nonlinear coefficients */
  /* Area */
  nToken = 0;
  nCoef = 0;
  RowIndex[nCoef] = 0;
  ColIndex[nCoef] = nSide;
  Factor[nCoef] = 0.5;
  FormulaStart[nCoef++] = nToken;
  for (i = 1; i < nSide - 1; i++) {
    Type[nToken] = XPRS_TOK_COL;
    Value[nToken++] = nSide + i + 1;
    Type[nToken] = XPRS_TOK_COL;
    Value[nToken++] = nSide + i;
    Type[nToken] = XPRS_TOK_OP;
    Value[nToken++] = XPRS_OP_MULTIPLY;
    Type[nToken] = XPRS_TOK_RB;
    Value[nToken++] = 0;
    Type[nToken] = XPRS_TOK_COL;
    Value[nToken++] = i + 1;
    Type[nToken] = XPRS_TOK_COL;
    Value[nToken++] = i;
    Type[nToken] = XPRS_TOK_OP;
    Value[nToken++] = XPRS_OP_MINUS;
    Type[nToken] = XPRS_TOK_IFUN;
    Value[nToken++] = XPRS_IFUN_SIN;
    Type[nToken] = XPRS_TOK_OP;
    Value[nToken++] = XPRS_OP_MULTIPLY;
    if (i > 1) {
      Type[nToken] = XPRS_TOK_OP;
      Value[nToken++] = XPRS_OP_PLUS;
    }
  }
  Type[nToken] = XPRS_TOK_EOF;
  Value[nToken++] = 0;

  /* Distances */
  for (i = 1; i < nSide - 1; i++) {
    for (j = i + 1; j < nSide; j++) {
      RowIndex[nCoef] = iRow++;
      ColIndex[nCoef] = nSide;
      Factor[nCoef] = 1.0;
      FormulaStart[nCoef++] = nToken;

      Type[nToken] = XPRS_TOK_COL;
      Value[nToken++] = nSide + i;
      Type[nToken] = XPRS_TOK_CON;
      Value[nToken++] = 2;
      Type[nToken] = XPRS_TOK_OP;
      Value[nToken++] = XPRS_OP_EXPONENT;
      Type[nToken] = XPRS_TOK_COL;
      Value[nToken++] = nSide + j;
      Type[nToken] = XPRS_TOK_CON;
      Value[nToken++] = 2;
      Type[nToken] = XPRS_TOK_OP;
      Value[nToken++] = XPRS_OP_EXPONENT;
      Type[nToken] = XPRS_TOK_OP;
      Value[nToken++] = XPRS_OP_PLUS;
      Type[nToken] = XPRS_TOK_CON;
      Value[nToken++] = 2;
      Type[nToken] = XPRS_TOK_COL;
      Value[nToken++] = nSide + i;
      Type[nToken] = XPRS_TOK_OP;
      Value[nToken++] = XPRS_OP_MULTIPLY;
      Type[nToken] = XPRS_TOK_COL;
      Value[nToken++] = nSide + j;
      Type[nToken] = XPRS_TOK_OP;
      Value[nToken++] = XPRS_OP_MULTIPLY;
      Type[nToken] = XPRS_TOK_RB;
      Value[nToken++] = 0;
      Type[nToken] = XPRS_TOK_COL;
      Value[nToken++] = j;
      Type[nToken] = XPRS_TOK_COL;
      Value[nToken++] = i;
      Type[nToken] = XPRS_TOK_OP;
      Value[nToken++] = XPRS_OP_MINUS;
      Type[nToken] = XPRS_TOK_IFUN;
      Value[nToken++] = XPRS_IFUN_COS;
      Type[nToken] = XPRS_TOK_OP;
      Value[nToken++] = XPRS_OP_MULTIPLY;
      Type[nToken] = XPRS_TOK_OP;
      Value[nToken++] = XPRS_OP_MINUS;
      Type[nToken] = XPRS_TOK_EOF;
      Value[nToken++] = 0;
    }
  }
  FormulaStart[nCoef] = nToken;

  CHECK_XPRSCALL(XPRSslploadcoefs(xprob, nCoef, RowIndex, ColIndex, Factor, FormulaStart, 1, Type, Value));

  for (i = 0; i < nCol; i++) {
    ColIndex[i] = i;
  }

  CHECK_XPRSCALL(XPRSnlpsetinitval(xprob, nCol - 1, &ColIndex[1], &InitialValue[1]));

  CHECK_XPRSCALL(XPRSchgobjsense(xprob, XPRS_OBJ_MAXIMIZE));

  // We want to solve the problem to local optimality
  CHECK_XPRSCALL(XPRSsetintcontrol(xprob, XPRS_NLPSOLVER, XPRS_NLPSOLVER_LOCAL));

  CHECK_XPRSCALL(XPRSoptimize(xprob, "", NULL, NULL));

  goto NormalReturn;
returnWithError:
  printf("\nError %d", ReturnValue);
  ReturnValue = -1;
NormalReturn:

  // Retrieve error from Xpress
  if (ReturnValue) {
    fprintf(stderr, "An error was detected during execution.\n");
    if (xprob) {
      int errorcode;
      char errorMessage[512];
      XPRSgetintattrib(xprob, XPRS_ERRORCODE, &errorcode);
      XPRSgetlasterror(xprob, errorMessage);
      fprintf(stderr, "Optimizer returned error code '%i' with message:\n%s\n", errorcode, errorMessage);
    }
  }

  XPRSdestroyprob(xprob);
  XPRSfree();
  return(ReturnValue);
}


void XPRS_CC Message(XPRSprob my_prob, void* my_object, const char* msg, int len, int msgtype) {
  (void)my_prob;
  (void)my_object;
  switch (msgtype)
  {
  case 4:  /* error */
  case 3:  /* warning */
  case 2:  /* dialogue */
  case 1:  /* information */
    if (len == 0)
      printf("\n");
    else
      printf("%s\n", msg);
    break;
  default: /* exiting - buffers need flushing */
    fflush(stdout);
    break;
  }
}

© 2001-2025 Fair Isaac Corporation. All rights reserved. This documentation is the property of Fair Isaac Corporation (“FICO”). Receipt or possession of this documentation does not convey rights to disclose, reproduce, make derivative works, use, or allow others to use it except solely for internal evaluation purposes to determine whether to purchase a license to the software described in this documentation, or as otherwise set forth in a written software license agreement between you and FICO (or a FICO affiliate). Use of this documentation and the software described in it must conform strictly to the foregoing permitted uses, and no other use is permitted.