Initializing help system before first use

Maximizing the area of a polygon using a 'multimap' userfunction


Type: Programming
Rating: 3 (intermediate)
Description: Demonstrates how to solve a nonlinear problem in Java
File(s): PolygonMultiMap.java


PolygonMultiMap.java
import com.dashoptimization.DefaultMessageListener;
import com.dashoptimization.IntHolder;
import com.dashoptimization.XPRSconstants;
import com.dashoptimization.XPRSenumerations.ObjSense;
import com.dashoptimization.XPRSprob;
import com.dashoptimization.XPRSprob.MultiMapFunction;

import java.util.ArrayList;


/** Code example that uses a user function of type "multimap".
<pre>
   Xpress Optimizer Examples
   =========================

   Maximize the area of polygon of N vertices and diameter of 1
   The position of vertices is indicated as (rho,theta) coordinates
   where rho denotes the distance to the base point
   (vertex with number N) and theta the angle from the x-axis.

   (c) 2021-2025 Fair Isaac Corporation
</pre>

   Polygon example: maximise the area of an N sided polygon

   *** Demonstrating using a multimap (R^2-&gt;R^2) userfunction ***

<pre>
   Variables:

    rho   : 0..N-1   ! Distance of vertex from the base point
    theta : 0..N-1   ! Angle from x-axis

   Objective:
     (sum (i in 1..N-2) (rho(i)*rho(i-1)*sin(theta(i)-theta(i-1)))) * 0.5

   Constraints:
     Vertices in increasing degree order:
        theta(i) >= theta(i-1) +.0001  : i = 1..N-2
     Boundary conditions:
        theta(N-1) <= Pi
        0.1 <= rho(i) <= 1   : i = 0..N-2
     Third side of all triangles <= 1
        rho(i)^2 + rho(j)^2 - rho(i)*rho(j)*2*cos(theta(j)-theta(i)) <= 1    : i in 0..N-3, j in i..N-2
</pre>
 *
 * In this example we create a user function that takes two arguments and computes
 * both the sine of the difference of its arguments and the cosine of the difference
 * of its arguments.
 */

public final class PolygonMultiMap {

    /** User function that maps two doubles to two double.
     * Computes <code>sin(x[0] - x[1])</code> and <code>cos(x[0] - x[1])</code> .
     */
    private static double[] myTrigonometric(double[] value) {
        return new double[] {
            Math.sin(value[0] - value[1]),
            Math.cos(value[0] - value[1]),
        };
    }

    public static void main(String[] args) {
        try (XPRSprob prob = new XPRSprob(null)) {
            prob.addMessageListener(new DefaultMessageListener());

            // Number of sides of the Polygon
            int nSide = 5;

            // Theta
            int[] theta = prob.varArray('C', nSide - 1, 0.0, Math.PI,
                                        i -> String.format("THETA%d", i + 1));
            // Rho
            int[] rho = prob.varArray('C', nSide - 1, 0.01, 1.0,
                                      i -> String.format("RHO%d", i + 1));

            // Add the user function. It takes 2 input arguments and produces
            // two outputs. This must be specified here.
            MultiMapFunction trig = prob.nlpAddUserFunction("myTrigonometric", 2, 2, 0, PolygonMultiMap::myTrigonometric);

            // Objective function. We build the objective function as
            // a formula in infix notation. See below for submitting a
            // formula as string.
            // Tokens are always integers, while values may be integers
            // (for example operator or delimiter constants) or double
            // values (actual numbers). That is why the `val` list has
            // elements of type Number.
            ArrayList<Integer> tok = new ArrayList<Integer>();
            ArrayList<Number> val = new ArrayList<Number>();
            for (int i = 1; i < nSide - 1; ++i) {
                if ( tok.size() > 0 ) {
                    tok.add(XPRSconstants.TOK_OP);
                    val.add(XPRSconstants.OP_PLUS);
                }
                tok.add(XPRSconstants.TOK_COL);             // RHO(i)
                val.add(rho[i]);
                tok.add(XPRSconstants.TOK_OP);              // *
                val.add(XPRSconstants.OP_MULTIPLY);
                tok.add(XPRSconstants.TOK_COL);             // RHO(i-1)
                val.add(rho[i-1]);
                tok.add(XPRSconstants.TOK_OP);              // *
                val.add(XPRSconstants.OP_MULTIPLY);
                tok.add(XPRSconstants.TOK_FUN);             // myTrigonometric
                val.add(trig.getId());
                tok.add(XPRSconstants.TOK_LB);              // (
                val.add(XPRSconstants.TOK_LB);
                tok.add(XPRSconstants.TOK_COL);             // THETA(i)
                val.add(theta[i]);
                tok.add(XPRSconstants.TOK_DEL);             // ,
                val.add(XPRSconstants.DEL_COMMA);
                tok.add(XPRSconstants.TOK_COL);             // THETA(i-1)
                val.add(theta[i-1]);
                tok.add(XPRSconstants.TOK_DEL);             // :
                val.add(XPRSconstants.DEL_COLON);
                tok.add(XPRSconstants.TOK_CON);             // 1
                val.add(1);
                tok.add(XPRSconstants.TOK_RB);              // )
                val.add(XPRSconstants.TOK_RB);
                tok.add(XPRSconstants.TOK_OP);              // *
                val.add(XPRSconstants.OP_MULTIPLY);
                tok.add(XPRSconstants.TOK_CON);             // 0.5
                val.add(0.5);
            }
            tok.add(XPRSconstants.TOK_EOF);
            val.add(0.0);
            // Since nonlinear objectives cannot be directly expressed in Xpress, we maximize a free
            // variable objx and constrain this variable to be equal to the nonlinear objective.
            int objx = prob.addCol(1.0, XPRSconstants.MINUSINFINITY, XPRSconstants.PLUSINFINITY);
            int objeq = prob.addRow(new int[]{objx}, new double[]{-1.0}, 'E', 0.0);
            prob.nlpChgFormula(objeq, 0,
                               tok.stream().mapToInt(i -> i).toArray(),
                               val.stream().mapToDouble(d -> d.doubleValue()).toArray());
            prob.chgObjSense(ObjSense.MAXIMIZE);

            // Vertices in increasing degree order
            for (int i = 0; i < nSide - 2; ++i)
                prob.addRow(new int[]{ theta[i], theta[i+1] },
                            new double[]{ -1.0, 1.0 },
                            'G',
                            0.001);

            // Third side of all triangles <= 1
            for (int i = 1; i < nSide - 1; i++) {
                for (int j = i + 1; j < nSide; j++) {
                    int row = prob.addRow(new int[0], new double[0], 'L', 1.0);
                    prob.nlpChgFormulaStr(row,
                        String.format("RHO%d ^ 2 + RHO%d ^ 2 - RHO%d * RHO%d * 2 * myTrigonometric ( THETA%d , THETA%d : 2 )",
                        i, j, i, j, j, i));
                }
            }

            IntHolder solvestatus = new IntHolder();
            IntHolder solstatus = new IntHolder();
            prob.optimize("s", solvestatus, solstatus);
            System.out.printf("solvestatus: %s%n", solvestatus);
            System.out.printf("solstatus:   %s%n", solstatus);
            System.out.printf("Solution value: %f%n", prob.attributes().getObjVal());

            double[] x = prob.getSolution();
            for (int i = 0; i < rho.length; ++i)
                System.out.printf("RHO%d = %f%n", i + 1, x[rho[i]]);
            for (int i = 0; i < theta.length; ++i)
                System.out.printf("THETA%d = %f%n", i + 1, x[theta[i]]);

        }
    }
}

© 2001-2025 Fair Isaac Corporation. All rights reserved. This documentation is the property of Fair Isaac Corporation (“FICO”). Receipt or possession of this documentation does not convey rights to disclose, reproduce, make derivative works, use, or allow others to use it except solely for internal evaluation purposes to determine whether to purchase a license to the software described in this documentation, or as otherwise set forth in a written software license agreement between you and FICO (or a FICO affiliate). Use of this documentation and the software described in it must conform strictly to the foregoing permitted uses, and no other use is permitted.